在处理512K上下文长度时,标准Transformer内存使用是YOCO的6.4倍,预填充延迟是YOCO的30.3倍,而YOCO的吞吐量提升到标准Transformer的9.6倍。去年一张“大语言模型进化树”动图在学术圈疯转,模型架构还只有三大类:Decoder-Only、Encoder-Only、Encoder-Decoder。那么这个新出的Decoder-Decoder架构到底长啥样?嗯,如...
Decoder-Only Transformer架构源于2017年提出的原始Transformer模型[1],但通过去除编码器部分,专注于解码过程,实现了更高效的训练和推理。这种架构在大规模预训练和下游任务适应方面表现出色,成为了当前LLMs的主流选择。 本文旨在了解Decoder-Only Transformer架构,探讨其工作原理、核心组件、应用案例以及未来发展方向。我们将...
在处理 512K 上下文长度时,标准 Transformer 内存使用是 YOCO 的 6.4 倍,预填充延迟是 YOCO 的 30.3 倍,而 YOCO 的吞吐量提升到标准 Transformer 的 9.6 倍。 去年一张“大语言模型进化树”动图在学术圈疯转,模型架构还只有三大类:Decoder-Only、Encoder-Only、Encoder-Decoder。 那么这个新出的 Decoder-Decoder...
2. Decoder-only Transformer在Inference时的浮点数运算次数(FLOPs) 本文依据如图1所示的GPT-1 model结构计算decoder-only transformer在Inference时的浮点数运算次数。为了方便计算,本文忽略Text&Position Embed部分的计算,直接从进入Multi-Head Attention开始。 图1 2.1 数学符号 假设一次Inference时,模型的Input为 x\in...
以下是Decoder-Only Transformer的主要优势:1. 简化模型结构- 减少复杂性:Decoder-Only架构去掉了编码器部分,使得模型结构更加简单,减少了模型的复杂性。- 易于实现:简化后的模型更容易实现和调试,减少了训练和推理过程中的潜在问题。2. 提高生成效率- 并行生成:在生成任务中,Decoder-Only模型可以更高效地进行...
会使用前i−1步的输出(y1,...,yi−1)作为输入,预测yi,因此,称之为Causal Transformer。
当前的大语言模型(如GPT)采用"decoder only"架构,而不是完整的Transformer架构,主要有几个原因:训练...
微软&清华最新研究,打破GPT系列开创的Decoder-Only架构—— 提出Decoder-Decoder新型架构,名为YOCO(You Only Cache Once)。 YOCO仅缓存一次键值对,可大幅降低GPU内存需求,且保留全局注意力能力。 一张图来看YOCO和标准Transformer的比较。 在处理512K上下文长度时,标准Transformer内存使用是YOCO的6.4倍,预填充延迟是YOCO...
基于Transformer 模型以非灰色显示: decoder-only 模型在蓝色分支, encoder-only 模型在粉色分支, encoder-decoder 模型在绿色分支。 模型在时间线上的垂直位置表示它们的发布日期。 开源模型由实心方块表示,而闭源模型由空心方块表示。 右下角的堆积条形图显示了各公司和机构的模型数量。
Transformer Decoder-Only架构主要由Self-Attention机制、Multi-Head Attention机制和Feed Forward Network机制组成。这些模块通过堆叠和链接形成了一个端到端的解码器结构。 在Self-Attention机制中,解码器能够对输入序列中的不同位置进行自我关注,从而捕捉局部和全局之间的依赖关系。Multi-Head Attention机制通过多个并行的自...