图1:DocLLM的关键要素。(1)输入文档包含文本标记和它们的边界框。 (2) LLM的注意力机制被扩展以捕获...
可扩展性:Decoder-only模型通常可以很容易地与其他技术相结合,比如注意力机制、自回归预测等,以提高模型性能。简洁性:相对于复杂的Encoder-Decoder结构,Decoder-only模型的结构更简单,这不仅降低了实现难度,也使得模型更容易理解和调试。自然语言生成:Decoder-only架构本质上是一个语言模型,非常适合于文本生成任务...
首先概述几种主要的架构:以BERT为代表的encoder-only、以T5和BART为代表的encoder-decoder、以GPT为代表...
The rise of decoder-only Transformer models written byShraddha Goled Apart from the various interesting features of this model, one feature that catches the attention is its decoder-only architecture. In fact, not just PaLM, some of the most popular and widely used language models are decoder-...
一、Decoder-Only架构 定义与应用:Decoder-Only架构,也被称为生成式架构,仅包含解码器部分,没有编码器。这种架构通常用于生成任务,如文本生成、对话系统等。其代表模型是GPT(Generative Pre-trained Transformer),它通过预测下一个单词来生成文本,具有自回归生成的特点。 工作原理:Decoder-Only架构的核心是自回归生成机...
LLM 是“Large Language Model”的简写,目前一般指百亿参数以上的语言模型,主要面向文本生成任务。跟小尺度模型(10 亿或以内量级)的“百花齐放”不同,目前 LLM 的一个现状是 Decoder-only 架构的研究居多,像 OpenAI 一直坚持 Decoder-only 的 GPT 系列就不说了,即便是 Google 这样的并非全部押注在 Decoder-only...
原因1:过往研究证明decoder-only泛化化性能更好Google有两篇著名的发表于ICML’22的论文,一个是《Examining Scaling and Transfer of Language Model Architectures for Machine Translation》,另一个是《What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?》,两篇论文...
(1)decoder-only:使用 decoder-only 框架实现直接的语音翻译,同时能够容纳多源的训练数据。(2)textless:构建了基于 units 的音频 LM 用于语音翻译,可以用于非书写语言。论文地址:https://arxiv.org/abs/2306.02982 demo 地址:https://speechtranslation.github.io/polyvoice/ 语音到语音翻译(S2ST)是一项...
Decoder-Only架构的大模型的代表有GPT系列、LLaMA、OPT、BLOOM等。这类模型采用预测下一个词进行训练,常见下游任务有文本生成、问答等,因此被称为ALM(Autoregressive Language Model)。 国内采用Decoder-Only架构研发的大模型有妙想金融大模型、XVERSE-13B大模型等。其中,妙想金融大模型是东方财富旗下自主研发的金融行业...
当前的LLM(Language Model)模型大多数采用了Decoder-only的架构,这是因为Decoder-only的模型具有以下几...