ax.set_ylabel("score") ax.set_title("Decision Tree Regression") ax.legend(framealpha=0.5) plt.show() X_train,X_test,y_train,y_test=creat_data(200) test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=12) 由上图我们可以看出,当我们使用train_test进行数据集的分割的...
```python model = DecisionTreeRegressor(random_state=42) model.fit(X_train, y_train) ``` 四、输出决策树回归规则 使用export_text函数可以输出决策树回归规则。具体步骤如下: 1. 创建一个空字符串变量,用于存储规则输出。 2. 使用DecisionTreeRegressor类的predict函数对测试集进行预测,并获取预测结果。 3...
Categorical variable decision tree (or classification tree): when you use a decision tree to predict for a categorical target variable Continuous variable decision tree (or regression trees): when you use decision tree to predict for a continuous target variable Main Benefits of Decision Trees Algori...
也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。 CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。
在Python中,使用scikit-learn库可以很方便地实现决策树,并获取样本属于每个类别的预测概率。 import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier ...
● 基尼指数(Gini Impurity):另一种衡量数据集纯度的指标,越小表示纯度越高。在CART(Classification and Regression Tree)算法中,基尼指数常用于替代信息增益作为节点划分的依据。2. 其他度量与算法 ● 卡方检验(Chi-Squared Test):用于评估特征与类别之间的关联性,适用于离散型特征。在某些决策树实现中,...
n_treeA positive integer specifying the number of trees to grow.m_tryA positive integer specifying the number of variables to sample as split candidates at each tree node. The default values are sqrt(num of vars) for classification and (num of vars)/3 for regression....
res =1.0for numincounters.values(): p = num / len(y) ### 计算系统内各类样本的占比 res -= p**2return res 应用基尼系数(G)搜索决策条件的实习测量同以上信息熵搜索策略。 2.2 在sklearn中训练基于基尼系数的决策树模型 from sklearn.treeimport DecisionTreeClassifier ...
常见的算法包括 CART(Classification And Regression Tree), ID3, C4.5等。我们往往根据数据集来构建一棵决策树,他的一个重要任务就是为了数据中所蕴含的知识信息,并提取出一系列的规则,这些规则也就是树结构的创建过程就是机器学习的过程。 决策树的结构
It can be utilized for both classification and regression problems. To easily run all the example code in this tutorial yourself, you can create a DataLab workbook for free that has Python pre-installed and contains all code samples. For a video explainer on Decision Tree Classification, you ...