DDR4标准采用的CTLE作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更为常见,考虑到DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信号抖动的定义和分析也会随之变化。从测试角度来看,示波器是无法得到TP2点即均衡后的信号的,而仅能得到TP1点的信号,然后通过集成在示波器上的...
首先是CDR,由于系统里有了显示时钟,可以使用不具有频率跟踪能力的DLL模块,来代替原先复杂的CDR模块。 第二个是CTLE,虽然CTLE实现简单,但是考虑到单端的DDR5总线里的反射和串扰等,对信噪比恶化严重,所以使用了VGA可变增益放大器来代替CTLE。 第三个是借鉴了成熟的DFE均衡技术。最后一个,沿用了DDR以往的write leveling和...
因此在接收侧速率大于 3600M T/s 时采用类似高速串行电路和标准总线中已经成熟的 DFE 均衡技术,可变增益放大(VGA)则通过 MR 寄存器配置,以补偿在更高速率传输时链路上的损耗。 DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采...
因此在接收侧速率大于 3600M T/s 时采用类似高速串行电路和标准总线中已经成熟的DFE均衡技术,可变增益放大(VGA)则通过 MR寄存器配置,以补偿在更高速率传输时链路上的损耗。DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采用。另...
与DDR4标准中常用的CTLE线性均衡放大相比,这种技术虽然更复杂,但能有效降低反射噪声的影响。此外,随着并行总线中信号抖动的变化,串扰和反射等问题也需重新定义和分析。在测试方面,示波器无法直接获取均衡后的信号,即TP2点的数据,而只能捕捉到TP1点的信号。然而,通过示波器上的分析软件,可以利用均衡算法对信号进行...
DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信 号抖动的定义和分析也会随之变化。 从测试角度来看,示波器是无法得到 TP2点即均衡后的信号的,而仅能得到 TP1点的信 号,然后通过集成...
DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信 号抖动的定义和分析也会随之变化。 从测试角度来看,示波器是无法得到 TP2点即均衡后的信号的,而仅能得到 TP1点的信 号,然后通过集成...
DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信 号抖动的定义和分析也会随之变化。 从测试角度来看,示波器是无法得到 TP2点即均衡后的信号的,而仅能得到 TP1点的信 号,然后通过集成...
DDR4标准采用的 CTLE 作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更 为常见,考虑到 DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信 号抖动的定义和分析也会随之变化。 从测试角度来看,示波器是无法得到 TP2点即均衡后的信号的,而仅能得到 TP1点的信 号,然后通过集成...
DDR4标准采用的CTLE作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更为常见,考虑到DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信号抖动的定义和分析也会随之变化。从测试角度来看,示波器是无法得到TP2点即均衡后的信号的,而仅能得到TP1点的信号,然后通过集成在示波器上的...