datasets.load_dataset函数加载本地数据集时,可以遵循以下步骤: 准备本地数据集文件: 确保你的本地数据集文件已经准备好,并且格式正确(如CSV、JSON、TXT等)。 导入datasets库: 在你的Python脚本或Jupyter Notebook中导入datasets库。python from datasets import load_dataset ...
一、Load dataset 1.1 Hugging Face Hub 1.2 本地和远程文件 1.2.1 CSV 1.2.2 JSON 1.2.3 text 1.2.4 Parquet 1.2.5 内存数据(python字典和DataFrame) 1.2.6 Offline离线(见原文) 1.3 切片拆分(Slice splits) 1.3.1 字符串拆分(包括交叉验证) 1.4 Troubleshooting故障排除 1.4.1手动下载 1.4.2 Specify fe...
datasets.load_dataset限制范围 `datasets.load_dataset`函数是Hugging Face库中一个非常实用的函数,用于加载和下载各种NLP数据集。它允许你访问预定义的数据集以及用户自定义的数据集。 `load_dataset`函数的第一个参数是要加载的数据集的名称,可以是预定义的数据集,也可以是用户自定义的本地数据集。预定义的数据集...
hfdataset = load_dataset(path, name=name, **kwargs)其中 path=D:\code_for_python\Adaseq\AdaS...
from datasets import load_dataset # 调用load_dataset方法加载IMDB数据集 dataset = load_dataset("imdb") # 打印数据集的信息 print(dataset) ``` 在上面的代码示例中,我们首先从datasets模块中导入load_dataset方法,然后使用load_dataset方法加载IMDB数据集,并最后打印出数据集的信息。这样,你就成功实现了“from...
TensorFlow 2.x 中提供的一个实用函数,用于从文件夹中的图像文件直接生成一个tf.data.Dataset对象,...
1. load_dataset参数 load_dataset有以下参数,具体可参考源码 defload_dataset( path: str, name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Union[Dict, List] = None, split: Optional[Union[str, Split]] = None, ...
from datasets import load_dataset 1. 一、基本使用 1.加载在线数据集 datasets = load_dataset("madao33/new-title-chinese") datasets ''' DatasetDict({ train: Dataset({ features: ['title', 'content'], num_rows: 5850 }) validation: Dataset({ ...
os.environ["HF_ENDPOINT"]="https://hf-mirror.com"fromdatasetsimportload_dataset dataset=load_dataset(path='squad',split='train')print(dataset) 因为原网址是不可用的,如图 hf 原网址 上面修改的环境变量是在 datasets 库中的 config.py 文件中的变量,如下图: ...
importdatasetsdataset=datasets.load_dataset("codeparrot/self-instruct-starcoder", cache_dir="./hf_cache") ⌛ 结果下载到一半: ConnectionError:Couldn'treach https://huggingface.co/datasets/codeparrot/self-instruct-starcoder/resolve/fdfa8ceb317670e982aa246d8e799c52338a74a7/data/curated-00000-of-00...