增加一列,用df['新列名'] = 新列值的形式,在原数据基础上赋值即可 df=pd.DataFrame(np.random.randn(6,4),columns=list('ABCD'))print(df)df['新增的列']=range(1,len(df)+1)df['新增的列2']=['abc','bc','cd','addc','dd','efsgs']print(df.head())print(len(df))#表示数据集有...
In [15]: df.columns = ['col_one', 'col_two']如果你需要做的仅仅是将空格换成下划线,那么更...
pivot pivot函数用于从给定的表中创建出新的派生表 pivot有三个参数: 索引 列值 def pivot_simple(index, columns, values): """...=== color black blue red item Item1 None 2 1 Item2 4 None 3 将上述数据中的...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法...
res= pd.DataFrame({'one':[1,2,3,4],'two':[4,3,2,1]}) 第二种: pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']),'two':pd.Series([1,2,3],index=['b','a','c'])}) 第三种: pd.DataFrame(np.array([[10,20],[30,40]]),index=['a','b'],column...
DataFrame.query(expr[, inplace]) #Query the columns of a frame with a boolean expression. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 5二元运算 DataFrame.add(other[,axis,fill_value]) #加法,元素指向 ...
columns=['one', 'two', 'three', 'four']) #将df储存为MySQL中的表,不储存index列 df_write.to_sql('test_01', engine, index=False) # mysql查询语句 sql_query = 'select * from test_01;' # 使用pandas的read_sql_query函数执行SQL语句,并存入DataFrame ...
Query the columns of a frame with a boolean expression. 二元运算 方法 描述 DataFrame.add(other[, axis, level, fill_value]) 加法,元素指向 DataFrame.sub(other[, axis, level, fill_value]) 减法,元素指向 DataFrame.mul(other[, axis, level, fill_value]) ...
m1=df.mean() print(m1,type(m1)) print('单独统计一列:',df['key2'].mean()) print('---') # np.nan :空值 # .mean()计算均值 # 只统计数字列 # 可以通过索引单独统计一列 m2= df.mean(axis=1) print(m2) print('---') # axis...
Example 1: GroupBy pandas DataFrame Based On Two Group Columns Example 1 shows how to group the values in a pandas DataFrame based on two group columns. To accomplish this, we can use thegroupby functionas shown in the following Python codes. ...
columns Returns the column labels of the DataFrame combine() Compare the values in two DataFrames, and let a function decide which values to keep combine_first() Compare two DataFrames, and if the first DataFrame has a NULL value, it will be filled with the respective value from the second...