data-processing inequality的例子 数据处理不等式(data processing inequality)是信息论中的一个基本不等式,它表明在处理原始数据的过程中,信息可能会丢失或被削弱。以下是一些数据处理不等式的例子: 1.哈夫曼编码:哈夫曼编码是一种用于无损数据压缩的算法。在这个过程中,原始数据经过一系列的变换和编码,最终以更短的...
数据处理不等式:Data Processing Inequality 我是在差分隐私下看到的,新解决方案的可用性肯定小于原有解决方案的可用性,也就是说信息的后续处理只会降低所拥有的信息量。 那么如果这么说的话为什么还要做特征工程呢,这是因为该不等式有一个巨大的前提就是数据处理方法无比的强大,比如很多的样本要分类,我们做特征提取...
This leads to a simple proof of a curious inequality of Samorodnitsky (2015), and sheds light on how information spreads in the subsets of inputs of a memoryless channel.doi:10.48550/arXiv.1508.06025Polyanskiy, YuryWu, YihongY. Polyanskiy and Y. Wu, "Strong data-processing inequalities ...
内容提示: Reverse-type Data Processing InequalityPaula Belzig 1,2 , Li Gao 3 , Graeme Smith 1,2 , Peixue Wu 1,21 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.2 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada.3 School...
数据处理不等式:Data Processing Inequality 2017-11-02 11:48 −... 加拿大小哥哥 0 3500 【LOJ6620】「THUPC2019」不等式 / inequality(线段树) 2019-12-18 18:58 −[点此看题面](https://loj.ac/problem/6620) **大致题意:** 给你两个长度为$n$的数组$a_i$和$b_i$,定义$f_k(x)=\sum...
– p. 1/16 Background Classical joint source–channel data processing inequality (DPI) for U →X →Y →V : R(D) ≤ I(U; V ) ≤ I(X; Y ) ≤ C ⇒ D ≥ R −1 (C). Ziv and Zakai (1973) generalized to: R Q (D) ≤ I Q (U; V ) ≤ I Q (X; Y ) ≤ C Q ...
We study the-z-Rényi divergenceswhere() for normal positive functionalson general von Neumann algebras, introduced in Kato and Ueda (arXiv:2307.01790) and Kato (arXiv:2311.01748). We prove the variational expressions and the data processing inequality (DPI) for the-z-Rényi divergences. We esta...
maximal f-divergencesdata processing inequalityIn this work, we provide a strengthening of the data processing inequality for the relative entropy introduced by Belavkin and Staszewski (BS-entropy). This extends previous results by Carlen and Vershynina for the relative entropy and other standard f...
INEQUALITY( \neq)。如果 x_i\neq y_i ,那么 x_i\bigoplus y_i \neq 0^{k+1} ,那么 (x_i\bigoplus y_i) +01^k = 1*^k 。因此 ((x_i \bigoplus y_i) +01^k) \wedge 10^k = 10^k 就表示x和y不相等。因此,应用到处理器字上, Z=((X \bigoplus Y) + 01^k01^k...01^k...
摘要: Presents information on a study which proved a data processing inequality for quantum communication channels. Operator monotonicity; Finite quantum systems and physical maps; Uhlmann's Monotonicity Theorem; Quantum data processing inequality.