本篇是发表在 CVPR 2022 上的 Generalized Few-shot Semantic Segmentation(后文简称 GFS-Seg),既一种泛化的小样本语义分割模型。在看论文的具体内容之前,我们先了解一些前置知识。 深度学习是 Data hunger 的方法, 需要大量的数据,标注或者未标注。少样本学习研究就是如何从少量样本中去学习。拿分类问题来说,每个...
4 Towards GFS-Seg 在经典的 Few-Shot Segmentation 任务中,有两个关键标准:(1) 模型在训练期间没有看到测试类的样本。(2) 模型要求其 Support set 样本包含 Query set 中存在的目标类,以做出相应的预测。 通过下图,我们来看下 GFS-Seg 与经典人物有哪些不同。下图中用相同的 Query 图像说明了 FS-Seg 和 ...
来自浙大的一篇文章,看模板应该是投稿CVPR,主要关注的问题是预训练模型中如何充分利用few-shot的能力,主要的方法是利用zero-shot能力和learnable prompt,使用self-ensemble 和distillation进一步增强,最终效果是1-shot在四个数据集上有3个点的平均提升。 Paper Link:arxiv.org/pdf/2401.0501 Motivation Few-shot Learning...
我们分别在四个流行的 Few-Shot Classification 数据集:mini-Imagenet, tiered-Imagenet, CIFAR-FS 和 FC100 上做了详尽的实验。最终结果如表 1,2,3 所示:相比于现有的 SOTA 模型,HCTransformers 在 1-shot 和 5-shot 的结果上都显示出明显的性能优势。例如,如表 1 所示,在 miniImagnet 上,HCTransfor...
对于Few-shot目标检测算法的探索主要分成两个方向:meta-learning(元学习) 和 transfer learning(迁移学习)。 【个人观点:首先,本人对meta-learning没有研究过,所以不予置评。对于迁移学习,之前在不少案例中都应用过该技术,分类的性能确实远高于自己搭建的网络性能。所以,通常在进行目标检测或分类任务时,首选的技术手段...
但是今天这篇论文提出,小样本学习(few-shot learning)情况下的图像多标签分类(multi-label classification)也能够实现类似集合一样的交,并,补操作。 对于小样本学习来说,核心难点经常是可用训练样本数目不足,解决的方法也多是寻求各种形式的样本合成(Example Synthesis),当然样本合成基本都是针对于单标签的普通分类情况...
这里笔者介绍一篇小样本(few-shot)数据方向下的域适应(Domain Adaptation)的目标检测算法,这篇新加坡国立大学 & 华为诺亚方舟实验室的论文Few-shot Adaptive Faster R-CNN被收录于CVPR 2019,解决的具体问题场景是在普通常见场景下的汽车目标检测。 我们只有少量雾天暴雨极劣天气环境下的汽车样本,那么我们可以使用成对采...
CVPR19-Few-shot 本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。 小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。 基于度量的方法 (在原型网络,图卷积的基础上改进) ...
https://openaccess.thecvf.com/content/CVPR2022/papers/Han_Few-Shot_Object_Detection_With_Fully_Cross-Transformer_CVPR_2022_paper.pdf 计算机视觉研究院专栏 作者:Edison_G 小样本目标检测 (FSOD)旨在使用很少的训练示例检测新目标,最近在社区中引起了极...
在本文中,few-shot的实现是:使输入为一张图像以及一些标注信息,这些标注信息就是少量的目标物体样例。在源码中样例数量大概为3个,使用方框标注。输出是一张“密度图”,预测和原图同位置的地方是否有目标,有就标密度值为1,没有就标0。最后,对密度图做一个求和操作,得出计数结果。