而对于检测和分割这类问题,CNN方法已经很成熟,难以一下子用transformer替换掉,目前的工作都是CNN和transformer的混合体,这其中有速度和效果的双重考虑。 另外也要考虑到如果输入较大分辨率的图像,transformer的计算量会很大,所以ViT的输入并不是pixel,而是小patch,对于DETR它的transformer encoder的输入是1/32特征这都有...
CV Transformer的发展主要经历了以下3个阶段;首先是在CNN中引入Attention机制解决CNN模型结构只能提取local信息缺乏考虑全局信息能力的问题;接下来,相关研究逐渐开始朝着使用完全的Transformer模型替代CNN,解决图像领域问题;目前Transformer解决CV问题已经初见成效,更多的工作开始研究对CV Transformer细节的优化,包括对于高分辨率图...
然后讨论了Transformer增强的CNN方法,该方法利用Transformer来增强CNN的表示学习。由于忽略了原始ViT中的局部信息,CNN增强型Transformer采用了适当的卷积inductive bias来增强ViT,而局部注意力增强型Transformer重新设计了patch分区和注意力块,以提高其局部性。继CNN[162]中的分层和深层结构之后,分层Transformer用金字塔代替了固...
Module): def __init__(self, src_vocab, trg_vocab, d_model, N, heads, dropout): super(Transformer, self).__init__() self.encoder = Encoder(src_vocab, d_model, N, heads, dropout) self.decoder = Decoder(trg_vocab, d_model, N, heads, dropout) self.out = nn.Linear(d_model, ...
一、Transformer结构解析 对于encoder中就是首先标定位置、多头自注意力、归一化、激活函数、FFN-全链接层-MLPdecoder:不做过多说明 CNN和Transformer,如果选择Transformer的原因就是学习能力更强,但是参数量更大,需要的数据也更多。PCA就是降维 二、ViT图像分类 ...
王云鹤:卷积的尽头不是Transformer,极简架构潜力无限https://zhuanlan.zhihu.com/p/632685158 在过去几年时间,一直都在找关于神经网络架构创新的灵感。在视觉Backbone这个方向上,端侧我们有了GhostNet这种轻量的模型架构和系列算法。但是面对现在大算力,还没有什...
5)仅编码器结构减少了整个Transformer堆栈层,但过度增加了FLOPs,而编码器-解码器结构是FLOPs和参数之间的良好权衡,但更深的解码器层可能会导致长时间训练过程和过度平滑的问题。 此外,有许多Transformer主干用于改进分类性能,但很少有针对密集预测任务的工作。未来,论文预计Transformer主干将与深度高分辨率网络合作,以解决密...
在CV领域,CNN一直是各个技术方向最主流的算法,卷积由于其具有局部连接和权重共享的特性,取得了很好的效果。随着Transformer技术在自然语言处理领域取得了丰硕的成果,CV领域也开始尝试将Transformer 技术用于处理图像和视频信息。从2020年的ViT开始,图像分类、目标检测
检测Transformer 在本节中,论文将回顾用于目标检测的ViT,它可以分为两个部分:Transformer Neck和Transformer Backbone。对于neck,论文主要关注为Transformer结构指定的一种新表示,称为object query,即一组可学习的参数等价地聚集了全局特征。最近的变体试图在收敛加速或性能改进方面解决最优融合范式。除了专门为检测任务设计...
而Transformer在CV领域反响平平,一度认为不适合CV领域,直到最近计算机视觉领域出来几篇Transformer文章,性能直逼CNN的SOTA,给予了计算机视觉领域新的想象空间。本文不拘泥于Transformer原理和细节实现(知乎有很多优质的Transformer解析文章,感兴趣的可以看看),着重于Transformer对计算机视觉领域的革新。首先简略回顾一下...