然后讨论了Transformer增强的CNN方法,该方法利用Transformer来增强CNN的表示学习。由于忽略了原始ViT中的局部信息,CNN增强型Transformer采用了适当的卷积inductive bias来增强ViT,而局部注意力增强型Transformer重新设计了patch分区和注意力块,以提高其局部性。继CNN[162]中的分层和深层结构之后,分层Transformer用金字塔代替了固...
CV Transformer的发展主要经历了以下3个阶段;首先是在CNN中引入Attention机制解决CNN模型结构只能提取local信息缺乏考虑全局信息能力的问题;接下来,相关研究逐渐开始朝着使用完全的Transformer模型替代CNN,解决图像领域问题;目前Transformer解决CV问题已经初见成效,更多的工作开始研究对CV Transformer细节的优化,包括对于高分辨率图...
Module): def __init__(self, src_vocab, trg_vocab, d_model, N, heads, dropout): super(Transformer, self).__init__() self.encoder = Encoder(src_vocab, d_model, N, heads, dropout) self.decoder = Decoder(trg_vocab, d_model, N, heads, dropout) self.out = nn.Linear(d_model, ...
而对于检测和分割这类问题,CNN方法已经很成熟,难以一下子用transformer替换掉,目前的工作都是CNN和transformer的混合体,这其中有速度和效果的双重考虑。 另外也要考虑到如果输入较大分辨率的图像,transformer的计算量会很大,所以ViT的输入并不是pixel,而是小patch,对于DETR它的transformer encoder的输入是1/32特征这都有...
5)仅编码器结构减少了整个Transformer堆栈层,但过度增加了FLOPs,而编码器-解码器结构是FLOPs和参数之间的良好权衡,但更深的解码器层可能会导致长时间训练过程和过度平滑的问题。 此外,有许多Transformer主干用于改进分类性能,但很少有针对密集预测任务的工作。未来,论文预计Transformer主干将与深度高分辨率网络合作,以解决密...
Transformer/MTTR/MMT/Uniformer等10余个模型的讲解。 项目实践,学以致用 学员使用Transformer模型,练习CV领域应用最广泛的图像识别和目标检测任务。 专业团队严格打磨的课程内容,前沿且深入 课程内容经过前期数百小时的打磨设计,保证内容和项目节点设置合理,真正做到学...
Transformer 编码器,在特征输入Transformer模块前,将给定的特征分割成特征块,每个特征块被视作一个「word」。 Transformer 解码器,与编码器采用了同样的架构。将解码器的输出作为Transformer的输入。 为了适应多任务,研究人员还加入了一个可学习的任务编码。 总的来说,这两部分用于恢复输入数据中的缺失信息。 △去...
而Transformer在CV领域反响平平,一度认为不适合CV领域,直到最近计算机视觉领域出来几篇Transformer文章,性能直逼CNN的SOTA,给予了计算机视觉领域新的想象空间。本文不拘泥于Transformer原理和细节实现(知乎有很多优质的Transformer解析文章,感兴趣的可以看看),着重于Transformer对计算机视觉领域的革新。首先简略回顾一下...
deep Transformer,如Refined-ViT[37]和CaiT[42],具有巨大的潜力。随着模型尺寸与channel尺寸成二次增长,未来可以进一步研究deep Transformer中的相关权衡策略; CeiT[54]和CvT[36]在训练中小型模型(0到40M)有显著优势,这表明轻量模型的这种混合注意力block值得进一步探索。
而Transformer使用了位置嵌入 (Positional Encoding) 来理解语言的顺序,使用自注意力机制(Self Attention Mechanism)和全连接层进行计算,所有字都是同时训练,具有更好的并行性,不仅大大提高了计算效率,从长远来看更符合GPU的逻辑。 二、什么是Transformer? 1、整体框架 ...