和Transformer Encoder不同的是,因为Encoder具有位置不变性,DETR将positional encoding添加到每一个Multi-Head Self-Attention中,来保证目标检测的位置敏感性。1.1.2 Decoder 因为Decoder也具有位置不变性,Decoder的 个object query(可以理解为学习不同object的positional embedding)必须是不同,以便产生不同的结果,并...
1. Encoder-Decoder Transformer结构可以表示为Encoder和Decoder两个部分 Encoder和Decoder主要由Self-Attention和Feed-Forward Network两个组件构成,Self-Attention由Scaled Dot-Product Attention和Multi-Head Attention两个组件构成。 Scaled Dot-Product Attention公式: Multi-Head Attention公式: Feed-Forward Network公式: 2...
五、目标检测:CV中的注意力机制 注意力机制最早被使用在机器翻译(或自然语言处理)上中的Encoder-Decoder模型上,让网络在处理不同部分语句时能够聚焦到特定的已经编码的语义向量或输入上。 若想要理解上述注意力机制的来源,请学习和NLP和RNN相关的知识:吴恩达深度学习-序列模型,这是因为在计算机视觉中的注意力和机器翻...
Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如image caption的应用,就是CNN-RNN的编码-解码框架;再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架。因此,准确的说,Encoder-Decoder并不是一个具体的模型,而是一...
编码器-解码器(encoder-decoder)是语义分割领域中最重要的一种结构,它的核心思想就是先压缩,再解压,后续提到的绝大部分网络采用的都是这种原始的结构。在此基础之上,我们可以改变上采样方式,在论文中常常叫做微调编码器;也可以改变上采样方式,在论文中常常叫做微调解码器。通过这两种方式,我们就能创造出很多很多的种...
v3+:提出一个encoder-decoder结构,其包含DeepLabv3作为encoder和高效的decoder模块。encoder decoder结构中可以通过空洞卷积来平衡精度和运行时间,现有的encoder-decoder结构是不可行的。在语义分割任务中采用Xception模型并采用depthwise separable convolution,从而更快更有效。
Segnet: A deep convolutional encoder-decoder architecture for image segmentation 摘要: SegNet 有三个部分构成:一个 encoder network,一个对应的 decoder network,最后一个像素级别的分类层 本文最大的亮点在:在 encoder 阶段我们做 max-pooling时,我们将 pooling indices 记录下来,在decoder upsamples 使用这些 poo...
如图所示,MAE 模型使用非对称的 encoder-decoder 架构,它输入被 mask 遮盖的图像,由较大规模的 Transformer Encoder 将所有无遮盖的patch token 投影到 embedding 空间中,然后按顺序插入统一的 learnable mask token embedding并加上位置编码,最后使用一个轻量的 Transformer Decoder 将 embedding 序列重建为图像。具体而...
模型大致分为Encoder(编码器)和Decoder(解码器)两个部分,分别对应上图中的左右两部分。 其中编码器由N个相同的层堆叠在一起(我们后面的实验取N=6),每一层又有两个子层。 第一个子层是一个Multi-Head Attention(多头的自注意机制),第二个子层是一个简单的Feed Forward(全连接前馈网络)。两个子层都添加了...
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation Improving Semantic Segmentation via Video Propagation and Label Relaxation Gated-SCNN: Gated Shape CNNs for Semantic Segmentation ...