importos# 设置使用的 GPU 设备为第一个os.environ["CUDA_VISIBLE_DEVICES"]="0" 1. 2. 3. 4. 步骤3:在 Python 代码中进行设置 确保在进行任何与 GPU 相关的操作之前设置CUDA_VISIBLE_DEVICES。 importosimporttensorflowastf# 也可以是其他深度学习框架# 设置使用的 GPU 设备os.environ["CUDA_VISIBLE_DEVICE...
os.environ["CUDA_VISIBLE_DEVICES"]=str(gpu_id)# 训练代码... 1. 2. 3. 4. 5. 接下来,我们可以通过饼图分析应用场景的分布: 30%50%20%应用场景分布图像处理NLP训练增强学习 通过这些努力,我们不仅解决了python 写了cuda_visible_device 还是在0卡跑的问题,更揭示了在CUDA与多GPU系统配置中的一些深层次...
nohup python xxx.py & 1.2 查看运行中的进程 使用ps命令和grep可以查看当前运行的Python进程: ps -ef | grep python 1.3 查看输出日志 使用tail命令可以查看输出日志的内容: tail -f nohup.out 2. 在多个GPU上训练模型 如果你有多块GPU,并希望在不同的GPU上同时运行多个程序,可以使用CUDA_VISIBLE_DEVICES环境...
命令行出现CUDA_VISIBLE_DEVICES=0 python trainer.py这种命令 这是Linux可以的,但是Windows不行。 解决方案: 这条命令的含义很简单,也就是指定某个GPU来运行程序,我们可以在程序开头添加指定GPU的代码,效果是一样的: copy 1 2 importosos.environ["CUDA_VISIBLE_DEVICES"]='0' 或者在程序外部cmd命令行里执行以...
CUDA_VISIBLE_DEVICES=0,2,3 只有编号为0,2,3的GPU对程序是可见的,在代码中gpu[0]指的是第0块,gpu[1]指的是第2块,gpu[2]指的是第3块 CUDA_VISIBLE_DEVICES=2,0,3 只有编号为0,2,3的GPU对程序是可见的,但是在代码中gpu[0]指的是第2块,gpu[1]指的是第0块,gpu[2]指的是第3块 使用 临时设...
我有两个 GPU,想通过 ipynb 同时运行两个不同的网络,但是第一个笔记本总是分配两个 GPU。 使用 CUDA_VISIBLE_DEVICES,我可以隐藏 python 文件的设备,但我不确定如何在笔记本中这样做。 有没有办法将不同的 GP...
我们在CUDA_VISIBLE_DEVICES=0,1的环境变量下启动 Python 交互式环境,随后修改了CUDA_VISIBLE_DEVICES=1,此时我们初始化一个 torch 的 CUDA tensor,由于我们初始化这个 tensor 时没有指定 device id,torch 会默认选择第一个可见的 device。 $CUDA_VISIBLE_DEVICES=0,1python>>>importtorch;importos;os.environ["...
如果使用多gpu运行程序,可以直接使用CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu。当然也可以在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'来使用。 如果在pycharm中调试时,使用多gpu的话,除了直接在程序中设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3...
cuda_visible_devices是一个CUDA环境变量,用于指定哪些GPU设备对CUDA应用程序(如PyTorch)可见。例如,设置CUDA_VISIBLE_DEVICES=0,2会使CUDA应用程序只能看到编号为0和2的GPU设备。 2. 查找PyTorch中重置或设置cuda_visible_devices的方法 在PyTorch中,并没有直接提供重置cuda_visible_devices环境变量的函数。但是,你可以...
在终端调用Python脚本前,可以设置CUDA_VISIBLE_DEVICES变量,如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 $CUDA_VISIBLE_DEVICES=1python my_script.py 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: ...