# 处理模型训练deftrain_model(data,gpu_id):importos os.environ["CUDA_VISIBLE_DEVICES"]=str(gpu_id)# 训练代码... 1. 2. 3. 4. 5. 接下来,我们可以通过饼图分析应用场景的分布: 30%50%20%应用场景分布图像处理NLP训练增强学习 通过这些努力,我们不仅解决了python 写了cuda_visible_device 还是在0卡...
importos os.environ["CUDA_VISIBLE_DEVICES"]="1" 或 代码语言:javascript 代码运行次数:0 运行 AI代码解释 CUDA_VISIBLE_DEVICES=1python**.py 注意:这种设置方法一定要在第一次使用 cuda 之前进行设置 永久设置 linux: 在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc windows: ...
exportCUDA_VISIBLE_DEVICES=0# 只使用第一个 GPU 1. 在Python 代码中设置 importos# 设置使用的 GPU 设备为第一个os.environ["CUDA_VISIBLE_DEVICES"]="0" 1. 2. 3. 4. 步骤3:在 Python 代码中进行设置 确保在进行任何与 GPU 相关的操作之前设置CUDA_VISIBLE_DEVICES。 importosimporttensorflowastf# 也...
我有两个 GPU,想通过 ipynb 同时运行两个不同的网络,但是第一个笔记本总是分配两个 GPU。 使用CUDA_VISIBLE_DEVICES,我可以隐藏 python 文件的设备,但我不确定如何在笔记本中这样做。 有没有办法将不同的 GPU 隐藏到运行在同一台服务器上的笔记本中? 原文由 Tim 发布,翻译遵循 CC BY-SA 4.0 许可协议 pytho...
如果使用多gpu运行程序,可以直接使用CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu。当然也可以在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'来使用。 如果在pycharm中调试时,使用多gpu的话,除了直接在程序中设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3...
2、os.environ来设置CUDA_VISIBLE_DEVICES os是python中非常常用的系统包,而os.environ则是设置查看系统环境变量的模块,我们可以通过这个模块把CUDA_VISIBLE_DEVICES的设置写入到环境变量中,这样在执行这个程序的时候就可以指定GPU运行了。 importos os.environ["CUDA_VISIBLE_DEVICES"] ="0,1"##仅使用device0和 dev...
本期code:https://github.com/chunhuizhang/deeplearning-envs/blob/main/cuda_visible_devices.ipynb, 视频播放量 2058、弹幕量 2、点赞数 40、投硬币枚数 13、收藏人数 27、转发人数 3, 视频作者 五道口纳什, 作者简介 数学,计算机科学,现代人工智能。bridge the gap
$CUDA_VISIBLE_DEVICES=1python my_script.py 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importos os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"# see issue #152os.env...
简而言之就是:os.environ['CUDA_VISIBLE_DEVICES'] 的设置要放在要执行的 program 之外,并且要放在 import torch 之前。 因此,我单独设置了一个 python 文件用于设置 os.environ['CUDA_VISIBLE_DEVICES'],然后切换一下 jupyter kernel,刷新 kernel,再执行 jupyter 文件,没有报错了。
$ CUDA_VISIBLE_DEVICES=1python my_script.py AI代码助手复制代码 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: importosos.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"# see issue #152os.environ["CUDA_VISIBLE_DEVICES"]="1...