但是在我复现论文时,在使用pytorch1.13.0 pytorch-cuda=11.7时遇到了RuntimeError: indices should be either on cpu or on the same device as the indexed tensor (cpu)的错误,通过降低Pytorch和CUDA toolkit(不完整版)的版本,即conda install pytorch1.12.1 torchvision0.13.1 torchaudio0.12.1 cudatoolkit=11.3...
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch 该命令安装了指定版本的cudatoolkit,cudatoolkit是一个已编译好的 CUDA 库,它会在运行时被 PyTorch 使用,而不依赖于系统全局的 CUDA 安装。同时 torch 也会自动安装与指定版本的PyTorch兼容的cuDNN。 此链接为 pytorch 和 cudatoolkit 版本...
在安装了 cudatoolkit 后,只要系统上存在与当前的 cudatoolkit 所兼容的 Nvidia 驱动,则已经编译好的 CUDA 相关的程序就可以直接运行,而不需要安装完整的 Nvidia 官方提供的 CUDA Toolkit . Conda 安装的 CUDA Toolkit 和从 NVIDIA 官方网站下载并安装的 CUDA Toolkit 之间有一些关键区别,主要体现在安装方式、环境隔...
两者版本不需要一致 cudatoolkit: 编译好并支持pytorch运行的CUDA动态链接库,运行pytorch调用的CUDA都是cudatoolkit;仅当需要编译依赖CUDA的torch拓展模块时,会调用CUDA Toolkit cudatoolkit下载时指定适合CUDA的版本, cudatoolkit和CUDA Toolkit版本不需要一致 显卡驱动版本和CUDA Toolkit版本 下载显卡驱动 下载CUDA Toolkit t...
如红色标记,,本机配置最大版本可以安装到11.7,所以CUDA version11.7以下都可以安装。 2.3 CUDA驱动和CUDA Toolkit对应版本 表一:CUDA驱动及CUDA Toolkit最高对应版本 image.png 最新可查阅官方文档 注:驱动是向下兼容的,其决定了可安装的CUDA Toolkit的最高版本。
CUDA Toolkit版本及其可用PyTorch对应版本 pytorch1.6对应cuda版本,打开NVIDIA控制面板,点击帮助——系统信息——组件,查看自己电脑支持的cuda版本,我的笔记本显卡为GTX1660ti可以看到CUDA为11.0,那么我们可以安装cuda为10.1或10.2版本的pytorch,cudnn的版本只需要与
注意区分CPU版本 和 CUDA版本,下错版本会出现GPU 返回 False 第三步:CUDA下载安装 我使用的是 pytorch 1.12.1 版本,所以需要 cuda 11.6 版本 提醒:cudatoolkit就是cuda CUDA下载官网 找到11.6 版本 下载到指定的文件夹,运行exe文件 注意!!!:这个文件夹是临时文件夹,安装重启完之后会自动删除,所以后面文件安装不...
因此,在CUDA 11.1之前,每个新的CUDA Toolkit次要版本都会更改所需的最低驱动程序版本。系统管理员总是...
在安装时会同时安装CUDA Toolkit以及PyTorch,这是我们要知道的。 步骤一: 使用nvidia-smi查询驱动版本: 如图中Driver Version所示,该卡目前的驱动版本为384.81。 步骤二:此处提供三种方法可供选择。 (1)指定CUDA Toolkit版本(推荐) 根据表一查询到可安装的CUDA Toolkit版本,384.81对应最高的CUDA Toolkit版本为9.0。
1. 输入 accept,只安装 CUDA Toolkit 11.8,不安装包括 Driver 等 2. 选择 Options --> Toolkit ...