eliahburns/cuda_examplePublic NotificationsYou must be signed in to change notification settings Fork0 Star1 Files master data images Makefile README.md ray_cuda.cu raytrace.c sphere.bin
cuda计算加速. Contribute to banbishan/cudaExampleForDeepLearning development by creating an account on GitHub.
主要涉及不同threads之间的通信和同步, 首先利用https://github.com/yottaawesome/cuda-by-example/blob/master/src/chapter05/add_loop_long_blocks.cu这个例子解释了blocksPerGrid, threadsPerBlock的含义,以及如何完成长度超过threads上限的向量加运算。 同一个block内的threads间可以利用shared memory共享数据 __synct...
gitclonehttps://github.com/CodedK/CUDA-by-Example-source-code-for-the-book-s-examples-.git 首先是报错 nvcc -o ray ray.cu In file included from ../common/cpu_bitmap.h:20:0, from ray.cu:19: ../common/gl_helper.h:44:21: fatal error: GL/glut.h: No such file or directory#inclu...
所有的代码都放在了github上,地址是:https://github.com/godweiyang/torch-cuda-example 完整流程 下面我们就来详细了解一下PyTorch是如何调用自定义的CUDA算子的。 首先我们可以看到有四个代码文件: main.py,这是python入口,也就是你平时写模型的地方。
(3)从github中下载CUDA By Example代码,并将lib文件中的glut64.lib 放入 ./GL/lib/x64中3.CUDA By Example 实例准备 (1)在项目中添加新文件夹Course,并创建子目录chapter04,子目录include和CMakeLists.txt,并在子目录include中添加子文件夹Course(2)在chapter04目录中建立子目录include,子目录src和CMakeLists...
This example demonstrates how to pass in a GPU device function (from the GPU device static library) as a function pointer to be called. Requires Compute Capability 2.0 or higher. Added 2_Graphics/bindlessTexture - demonstrates use of cudaSurfaceObject, cudaTextureObject, and MipMap support in...
This is the first release of CUDA Samples on GitHub: Added vectorAdd_nvrtc. Demonstrates runtime compilation library using NVRTC of a simple vectorAdd kernel. Added warpAggregatedAtomicsCG. Demonstrates warp aggregated atomics using Cooperative Groups. Added deviceQuery. Enumerates the properties of the...
本篇教程我们主要讲解如何「编译并调用」之前我们写好的CUDA算子,完整的代码还是放在了github仓库,欢迎大家star并fork:https://github.com/godweiyang/torch-cuda-example 我保证,这是你网上简单「最为精简、最容易看懂」的一套代码了,因为我自己也是刚入门,复杂的我也看得累。
https://github.com/HeKun-NVIDIA/CUDA-Programming-Guide-in-Chinese 2. 学习gpu结构建议先看知乎上的一些博客,类似下面这篇梳理了NV GPU各代架构的发展和迭代过程: https://zhuanlan.zhihu.com/p/394352476 3. 当然学习的最好方式还是跟着敲代码,推荐一本书: 《CUDA by Example》 中文译本:《GPU高性能编程...