使用GPU device 0: TITAN X (Pascal) 设备全局内存总量: 12189MB SM的数量:28 每个线程块的共享内存大小:48 KB 每个线程块的最大线程数:1024 设备上一个线程块(Block)种可用的32位寄存器数量: 65536 每个EM的最大线程数:2048 每个EM的最大线程束数:64 设备上多处理器的数量: 28 === 使用GPU device 1:...
21 int deviceCount; 22 23 // 获取显示设备数 24 cudaGetDeviceCount (&deviceCount); 25 26 if (deviceCount == 0) 27 { 28 cout << "找不到设备" << endl; 29 return EXIT_FAILURE; 30 } 31 32 int i; 33 for (i=0; i<deviceCount; i++) 34 { 35 cudaDeviceProp prop; 36 if (cudaG...
环境变量CUDA_VISIBLE_DEVICES用于指定 CUDA 应用程序将在哪些 GPU 设备上运行,通常用于控制程序在多 GPU 系统上的 GPU 使用情况,对于单 GPU 系统和纯主机代码的程序没有意义。通过设置CUDA_VISIBLE_DEVICES,可以限制应用程序访问的 GPU 设备,以便在多任务或多用户环境中更好地管理和分配 GPU 资源。 CUDA_VISIBLE_D...
CUDA_VISIBLE_DEVICES=1python**.py 注意:这种设置方法一定要在第一次使用 cuda 之前进行设置 永久设置 linux: 在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc windows: 打开我的电脑环境变量设置的地方,直接添加就行了。 参考资料...
os.environ['CUDA_VISIBLE_DEVICES'] = f'{target_index}' # Step 2: Set device using CUDA Runtime API result = libcudart.cudaSetDevice(0) if result != 0: raise Exception(f"cudaSetDevice failed with error code {result}") # Step 3: Get bus ID using CUDA Runtime API ...
$CUDA_VISIBLE_DEVICES=1python my_script.py 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: 代码语言:javascript 复制 importos os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"# see issue #152os.environ["CUDA_VISIBLE_DEVICES"...
CUDA_VISIBLE_DEVICES=0,2,3Devices 0, 2, 3 will be visible; device 1 is masked CUDA will enumerate the visible devices starting at zero. In the last case, devices 0, 2, 3 will appear as devices 0, 1, 2. If you change the order of the string to “2,3,0”, devices 2,3,0 ...
# Now GPU1 will not be visible to The CUDA process that you launch from the second shell. # To provide the CUDA process access to GPU1, we should write the following to devices.allow $> echo'c 195:1 rmw'> devices.allow 完成任务后,请卸载/cgroupV1Device文件夹和 umount 命令。
device管理 NVIDIA提供了集中凡是来查询和管理GPU device,掌握GPU信息查询很重要,因为这可以帮助你设置kernel的执行配置。 本博文将主要介绍下面两方面内容: CUDA runtime API function NVIDIA系统管理命令行 使用runtime API来查询GPU信息 你可以使用下面的function来查询所有关于GPU device 的信息: ...
If you are writing GPU enabled code, you would typically use a device query to select the desired GPUs. However, a quick and easy solution for testing is to use the environment variableCUDA_VISIBLE_DEVICESto restrict the devices that your CUDA application sees. This can be useful if you are...