这行命令会将CUDA_VISIBLE_DEVICES设置为环境变量,使得随后在该终端会话中运行的CUDA程序只能看到并使用编号为0、1、2的GPU设备。 在Python脚本中设置: python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" 这段代码会在Python脚本运行之前设置环境变量,确保脚本中的CUDA操作只使用编号为0和1的GPU...
for(int i =0; i< FULL_DATA_SIZE; i+= 2*N){ cudaMemcpyAsync(dev_a0, host_a + i, N*sizeof(int),cudaMemcpyHostToDevice, stream0); cudaMemcpyAsync(dev_a1, host_a + i + N, N*sizeof(int),cudaMemcpyHostToDevice, stream1); cudamemcpyAsync(dev_b0, host_b + i, N*sizeof(int),...
我们点击File->New Session,弹出新建会话对话框,如下图所示: 其中File一栏填入我们需要进行剖析的应用程序exe文件,后面可以都不填(如果需要命令行参数,可以在第三行填入),直接Next,见下图: 第一行为应用程序执行超时时间设定,可不填;后面三个单选框都勾上,这样我们分别使能了剖析,使能了并发核函数剖析,然后运行分析...
CUDA_VISIBLE_DEVICES=1python**.py 注意:这种设置方法一定要在第一次使用 cuda 之前进行设置 永久设置 linux: 在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc windows: 打开我的电脑环境变量设置的地方,直接添加就行了。 参考资料...
第一种方法是先调用 t.cuda.set_device(1) 指定使用第二块 gpu,后序的 .cuda() 都不需要改变。 另外一种方法是设置环境变量 CUDA_VISIBLE_DEVICES,例如当 export CUDA_VISIBLE_DEVICES=1 时,只使用 物理上的第二块 GPU,但在程序中这块 cpu 会被看成是第一块逻辑 gpu。当然,CUDA_VISIBLE_DEVICES 还可以...
2、os.environ来设置CUDA_VISIBLE_DEVICES os是python中非常常用的系统包,而os.environ则是设置查看系统环境变量的模块,我们可以通过这个模块把CUDA_VISIBLE_DEVICES的设置写入到环境变量中,这样在执行这个程序的时候就可以指定GPU运行了。 importos os.environ["CUDA_VISIBLE_DEVICES"] ="0,1"##仅使用device0和 dev...
device = torch.device('cuda:1') 如果是别的代码,可能把1改成0就行,看自己显卡卡号。 解决办法(举了个选两张卡的例子): CUDA_VISIBLE_DEVICES=0,3 # 表示选择0,3这2张显卡 python -m torch.distributed.launch --nproc_per_node=2 # 每个卡只能跑一个进程,所以填2 ...
或者在Windows命令提示符中: 代码语言:txt 复制 set CUDA_VISIBLE_DEVICES="" python your_script.py 方法二:在代码中配置 在Python脚本中,可以通过设置PyTorch的设备为CPU来禁用CUDA。以下是一个示例代码: 代码语言:txt 复制 import torch # 设置设备为CPU device = torch.device("cpu") # 示例:创建一个张量...
如果上述步骤没有问题,可以得到结果:<Managed Device 0>...。如果机器上没有GPU或没安装好上述包,会有报错。CUDA程序执行时会独霸一张卡,如果你的机器上有多张GPU卡,CUDA默认会选用0号卡。如果你与其他人共用这台机器,最好协商好谁在用哪张卡。一般使用CUDA_VISIBLE_DEVICES这个环境变量来选择某张卡。如选择5...