1. Cross Entropy Loss 原理交叉熵损失(Cross Entropy Loss)是深度学习中常见的损失函数,torch.nn.functional 里的cross_entropy loss=F.cross_entropy(logits, target)其中 logits 是网络输出的概率向量,形状…
Loss_{all}=Loss_{cat} +Loss_{dog}+Loss_{fish}=1.2040+0.6931+1.2040=3.1011 从这两种情况的结果也可以看出,预测分布越接近真实分布,交叉熵损失越小,反之损失越大。 对一个batch,多标签分类任务的交叉熵损失函数计算方法为: Loss = \frac{1}{batch\_size}\sum_{j=1}^{batch\_size}{\sum_{i=1}...
cross entropyloss公式交叉熵损失函数(Cross Entropy Loss)公式为:L = - [y log y^ + (1 - y) log (1 - y^)]。 其中,y表示样本标签,y^表示模型预测值。交叉熵损失函数用于度量两个概率分布之间的距离,在机器学习中常用于分类问题。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | ...
例如,在二分类任务中常用的有二元交叉熵损失函数(Binary Cross-Entropy Loss/BCE Loss),在多分类任务中有softmax交叉熵损失函数,在回归任务中常见的是均方误差(Mean Squared Error/MSE)和绝对误差(Mean Absolute Error/MAE)等。 常见的损失函数包括: 二元交叉熵损失(Binary Cross-Entropy Loss / BCE Loss):适用于...
loss=-log(1-a) 横坐标是预测输出,纵坐标是损失函数值。 y=1 意味着当前样本标签值是1,当预测输出越接近1时,损失函数值越小,训练结果越准确。当预测输出越接近0时,损失函数值越大,训练结果越糟糕。此时,损失函数值如下图所示。 2.多分类问题中的交叉熵 ...
Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。 1、Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。 2、然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 。
2.2 nn.CrossEntropyLoss 3 损失函数的weight参数 3.1 cross_entropy函数中的weight参数 3.2 binary_cross_entropy函数中的weight参数 4 在二分类任务中输出1通道后sigmoid还是输出2通道softmax? 4.1 理论 4.2 实验 在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我...
一、cross entropy loss 二、weighted loss 三、focal loss 四、dice soft loss 五、soft IoU loss 总结: 一、cross entropy loss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
简介:损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss 一、crossentropyloss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
FYI: Pytorch里面计算CrossEntropyLoss时,这个步骤自动执行。 仅考虑正确类别对应的预测概率(即 one-hot labels [0, 1]中的1对应的预测概率,于是下图的p值等于0.5403),并取其对数的负值,最终的交叉熵损失为: 具体计算为: ⭐特别地,对于 batch size 大于1的情况,Pytorch在计算过程中会帮我们求平均: ...