nn.CrossEntropyLoss() 交叉熵损失 torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', label_smoothing=0.0) This criterion computes the cross entropy loss between input logits and target. 该函数计算输入 logits 和目标之间的交叉熵损失。 参数...
CrossEntropy Loss函数定义为模型输出y和真实值t之间的冲突程度,它可以用来评价模型的预测结果和真实结果之间的差异,从而用于度量学习算法的性能。 CrossEntropy Loss函数的具体表达式为: L=-sum(tlog a+(1-t)log(1-a)),它由正确分类的和错误分类两部分构成,以正确分类举例,t为1时,对应计算结果就是-log a,即...
Cross Entropy Loss (交叉熵损失函数) nn.CrossEntropyLoss是PyTorch中用于多分类问题的一种损失函数,特别适用于输出层是softmax激活函数后的分类任务。它结合了softmax函数和交叉熵损失(Cross-Entropy Loss)的操作,简化了模型训练过程中的计算步骤和代码实现。 基本概念: 交叉熵损失(Cross-Entropy Loss)源于信息论中的...
1. 什么是交叉熵损失函数(CrossEntropyLoss)? 交叉熵损失函数(CrossEntropyLoss)是一种用于分类问题的损失函数,它衡量的是模型预测的概率分布与真实标签的概率分布之间的差异。在二分类或多分类问题中,交叉熵损失函数通过计算预测概率与真实标签之间的“距离”来指导模型的学习过程,使得模型预测更加准确。 2. 交叉熵损...
crossentropyloss函数 pytorch PyTorch中的交叉熵损失函数 在深度学习中,损失函数(Loss Function)是一个至关重要的组成部分,它用于衡量模型的预测值与真实值之间的差异。交叉熵损失(Cross Entropy Loss)是分类问题中最常用的损失函数之一。在本文中,我们将深入学习PyTorch中的交叉熵损失函数的使用,并通过代码示例来帮助...
CrossEntropyLoss:交叉熵损失函数。 二. 实例 用例子来解释下CrossEntropyLoss和NLLLoss的区别,以三个样本为一个batch,任务为三分类为例。 1. input_:输入,模型的预测结果; target:真实结果、groudTruth,预测三个样本分类为类别0、2、1; 图1 2. 先对input_进行softmax,将结果映射的0~1之间的概率,每一行为一...
对比结果可以发现 通过 对CrossEntropyLoss函数分解并分步计算的结果,与直接使用CrossEntropyLoss函数计算的结果一致。 2.3 pytorch 和 tensorflow在损失函数计算方面的差异 pytorch和tensorflow在损失函数计算方面有细微的差别的,为啥对比pytorch和tensorflow的差异,因为一个更符合人的想法,一个稍微有一些阉割的问题,导致我们按...
crossentropyloss函数用法 交叉熵损失函数(Cross Entropy Loss)是一种常用于测量两个概率分布之间差异的方法。它在机器学习和深度学习中得到了广泛应用,特别是在分类任务中。本文将一步一步地介绍交叉熵损失函数的用法和计算方法。 1.交叉熵损失函数介绍 交叉熵损失函数是用来度量预测值与真实值之间差异的指标。对于...
CrossEntropyLoss函数包含Softmax层、log和NLLLoss层,适用于单标签任务,主要用在单标签多分类任务上,当然也可以用在单标签二分类上。 BCEWithLogitsLoss函数包括了Sigmoid层和BCELoss层,适用于二分类任务,可以是单标签二分类,也可以是多标签二分类任务。
下面将从什么是交叉熵损失函数、为什么要用交叉熵损失函数、交叉熵损失函数的计算方法等多个角度进行探究。 一、什么是交叉熵损失函数 交叉熵损失函数是一种用于分类问题中的损失函数,其计算方法比较特殊。在机器学习领域中,它被用来衡量模型预测结果和真实数据的相似度,常常用来进行监督学习模型的优化训练。 二、为什么...