这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。相对于CPU和GPU的冯诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比CPU和GPU高。那么相对于ASIC,FPGA的性能...
与GPU/CPU相比,FPGA与ASIC运行能效比更好(运算量/功耗),虽然前者有很多核心但是受限于冯诺依曼结构无法发挥并行计算特点,后者除了可以做到并行计算还能实现流水处理,大大减小了输入输出延时比。 在设计环节对比,FPGA只需用描述语言定义好内部逻辑结构即可实现硬件功能,ASIC设计制造要经过很多验证和物理设计,开发周期是是FPG...
3. GPU(图形处理器) GPU是专门为处理图形和图像数据而设计的硬件组件。它们的性能通常比CPU高得多,因为它们可以并行处理大量的图形和图像数据。然而,GPU在处理非图形任务方面相对较弱,这正是FPGA和CPU的优势所在。近年来,随着深度学习和人工智能的发展,GPU在这些领域的应用越来越广泛,因为它们可以高效地处理大量的并行...
这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。 相对于CPU和GPU的冯诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比CPU和GPU高。 那么相对于ASIC,FPGA的性能如何...
通俗易懂讲解cpu、gpu、fpga的特点 CPU、GPU和FPGA是三种不同的计算设备,它们各有特点。 CPU,也就是中央处理器,是计算机的“大脑”。它能够进行复杂的计算,处理各种数据,使得计算机能够执行各种任务。CPU的特点是主频高,这意味着它的计算速度快。同时,它也有核数多,这使得它能够同时处理多个任务。但是,CPU不太...
FPGA ASIC芯片一经设计就不能更改,那么当用户有其他需求时该怎么办? 这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。 相对于CPU和GPU的冯·诺依曼结构,FPGA采用无指令、无需共享...
GPU(Graphics Processing Unit,图形处理器):一种专用处理器,主要用于图形、影像、视频等计算密集型应用。GPU采用并行处理方式,可以同时处理多个指令,适合于并行计算,其算力比CPU高,但功耗也较高。FPGA FPGA(Field-Programmable Gate Array,现场可编程门阵列):一种可编程逻辑器件,可以按照用户需求进行编程,...
大家经常听说的CPU、GPU、FPGA、ASIC,全部都属于逻辑芯片。而现在特别火爆的AI,用到的所谓“AI芯片”,也主要是指它们。 █CPU(中央处理器) 先说说大家最熟悉的CPU,英文全称Central Processing Unit,中央处理器。 CPU 但凡是个人都知道,CPU是计算机的心脏。
2.相比CPU,FPGA的并行性和灵活性更高,能提供确定性的时延 处理器负责对外界输入的数据进行处理,CPU、GPU、FPGA等处理器的区别在于处理流程,CPU 的处理 流程使其擅长串行计算,以复杂的控制为特征,GPU 和 FPGA 的则更擅长大规模的并行计算:CPU是冯诺依曼架构下的处理器,遵循“Fetch (取指) -Decode (译码)...
FPGA 为什么比 GPU 的延迟低这么多? 这本质上是体系结构的区别。 FPGA 同时拥有流水线并行和数据并行,而 GPU 几乎只有数据并行(流水线深度受限)。 例如处理一个数据包有 10 个步骤,FPGA 可以搭建一个 10 级流水线,流水线的不同级在处理不同的数据包,每个数据包流经 ...