y = cosx·cos2x·cos4x·cos8x = 2^4*sinx·cosx·cos2x·cos4x·cos8x / 2^4*sinx = sin16x / 16sinxy′= (sin16x / 16sinx)′ = (1/16)*(16cos16x·sinx-sin16x·cosx)/(sinx)^2
相关知识点: 试题来源: 解析 -1/(256)xcos16x+1/(4096)sin16x+C ,提示:∫xsinxcosxcos2xcos4xcos8xdx =1/(16)∫(xsin16xdx=-1/(256))∫xdcos16x 256xdcs16x1=xcos 16x +256cos16dx=-1/(256)xcos16x+1/(4096)sin16x+C; 反馈 收藏 ...
结果二 题目 【题目】求 y=sinxcosxcos2xcos4xcos8x 的n阶导数. 答案 【解析】因为y=(sin16x)/(16) 所以y^((n))=16^(n-1)sin(16x+(nπ)/2) 相关推荐 1求y=sinxcosxcos2xcos4xcos8x的n阶导数 2【题目】求 y=sinxcosxcos2xcos4xcos8x 的n阶导数.反馈...
首先根据sin2a=2sinacosa 得 F(x)=1/2sin2xcos2xcos4xcos8x =1/4sin4xcos4xcos8x =1/8sin8xcos8x=1/16sin16x ∴ F(x)一阶导=cos16x 二阶导=-16sin16x n阶导=16的n-1次方乘以sin(16x+nπ/2)
यदि f(x)=cosxcos2xcos4xcos8xcos16x हो तो f'(x) का मान होगा
To find f′(π4) for the function f(x)=cosxcos2xcos4xcos8xcos16x, we will first simplify the function and then differentiate it. Step 1: Rewrite the functionWe can express the product of cosines in terms of sine using the double angle identity:cosx=sin2x2sinxWe will apply this ident...
y=2sinx*cosx*cos2x*cos4x*cos8x/2sinx =sin2x*cos2x*cos4x*cos8x/2sinx =2sin2x*cos2x*cos4x*cos8x/4sinx 以此类推y=(1/16sinx)*sin16x y'=(cos16x*sinx-cosx*sin16x)/(16*sinx^2)
数学函数图像为您作cosx+cos2x+cos3x+cos4x+cos5x+cos6x+cos7x+cos8x+cos9x+cos10x的函数图像。
做这种题目一般是从复杂的向简单的方向做.所以从右边开始证明 8 sinx cosx cos2x cos4x =4*(2sinx cosx )cos2x cos4x =4*sin2x cos2x cos4x =2*(2sin2x cos2x )cos4x =2sin4xcos4x =sin8x 等于左边得证
सिद्ध कीजिए कि - cosxcos2x cos 4x cos 8x=(sin 16x)/(16sinx)