先用2^n·sinx乘表达式的两边,求得f(x)=sin2nx/(2^n·sinx),然后再根据商的求导法则和复合函数求导法则,很容易求出f''(x),进而求出f''(0).
(cosx)n不能简单地表示成cos x ,cos2 x ,…,cos nx 的线性组合的形式。这是因为(cosx)n是一个 n 次的多项式,,在cos x 的幂次上,而cos kx (其中 k 是整数)表示的是cos x 的 k 倍角的余弦值,它们之间并没有直接的线性关系。实际上,(cosx)n可以使用二项式定理展开为 cos x ...
2sin x 2 cosnx = sin( x 2 +nx) + sin( x 2 -nx) .及和差化积即可得出. 解答: 证明:∵ 2sin x 2 cosnx = sin( x 2 +nx) + sin( x 2 -nx). ∴2 sin x 2 (cosx+cos2x+…+cosnx)=( sin 3x 2 -sin x 2 )+ (sin 5x 2 - 3x 2 ) +…+ (sin 1+2n 2 x-sin 1...
=lim(sinx/cosx+2sin2x/cos2x+...+nsinnx/cosnx)cosxcos2x...cosnx/(2x)=1/2lim(tanx/x+2tan2x/x+...+ntannx/x)cosxcos2x..cosnx =1/2(1+2^2+3^2+...+n^2)*1 =n(n+1)(2n+1)/12
2sin(x/2)[cosx+cos2x+cos3x+……+cosnx ]=2sin(x/2)cosx+2sin(x/2)cos2x+2sin(x/2)cos3x+……+2sin(x/2)cosnx =sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+sin(7x/2)-sin(5x/2)+……+sin(x/2+nx)-sin(nx-x/2)=sin(x/2+nx)-sin(x/2)所以,cosx+cos2x+...
证明:∵2sinx2cosnx=sin(x2+nx)+sin(x2−nx).∴2sinx2(cosx+cos2x+…+cosnx)=(sin3x2−sinx2)+(sin5x2−3x2)+…+(sin1+2n2x−sin1−2n2x)=sin1+2n2x−sinx2=2cosn+12xsinn2x.∴cos+cos2x+…+cosnx=cosn+12x∙sinn2xsinx2. 利用2sinx2cosnx=sin(x2+nx)+sin(x2−nx...
解析 cosx+cos2x+⋯+cosx =1/2sinx/2*(cosx*2sinx/2+cos2x*2sinx/2+⋯+cosnx*2sinx/2) =1/2sinx/2*(sin(3x)/2-sinx/2+sin(5x)/2-sin(3x)/2+⋯+sin(n+1/2)x-sin(n-\frac(1 ) = I =1/2sinx/2*(2*sinnx*cos(n+1)x) = ...
结果一 题目 cosx+cos2x+…+cosnx=[cos(n+1/2)·sinnx/2]/sinx/2怎么证明?? 答案 说个思路啊,用2sinx/2分别乘以等式左边各项,然后用积化和差公式,最后发现有好多项消去了。最后就得你要的东西了。相关推荐 1cosx+cos2x+…+cosnx=[cos(n+1/2)·sinnx/2]/sinx/2怎么证明??
通过积化和差、套缩求和、和差化积:∑k=1ncoskx=cscx2∑k=1n(sinx2coskx)=12...
2sin(x/2)[cosx+cos2x+cos3x+……+cosnx ]=2sin(x/2)cosx+2sin(x/2)cos2x+2sin(x/2)cos3x+……+2sin(x/2)cosnx =sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+sin(7x/2)-sin(5x/2)+……+sin(x/2+nx)-sin(nx-x/2)=sin(x/2+nx)-sin(x/2)所以,cosx+cos2x+...