Cochran Armitage检验是一种线性趋势检验,常用于自变量是有序分类变量,而因变量是二分类变量的资料,可以用来检验自变量和因变量存不存在线性趋势。 注意和Cochran-Mantel-Haenszel检验区分,CMH检验是研究两个分类变量之间关联性的一种检验方法。但有时数据除了我们研究的变量外,还混杂或隐含了其它的变量,如果将这些变量纳...
一、基本概念 Cochran-Armitage检验,是一种线性趋势检验,指经过logistic变换后呈现线性变化趋势。适用于处理分组变量为有序分类变量( K \geq 3 ),结局变量为二分类变量,即 K \times 2 列联表资料,因此又称…
Cochran Armitage检验是一种线性趋势检验,常用于自变量是有序分类变量,而因变量是二分类变量的资料,可以用来检验自变量和因变量存不存在线性趋势。 注意和Cochran-Mantel-Haenszel检验区分,CMH检验是研究两个分类变量之间关联性的一种检验方法。但有时数据除了我们研究的变量外,还混杂或隐含了其它的变量,如果将这些变量纳...
Cochran Armitage检验是一种线性趋势检验,常用于自变量是有序分类变量,而因变量是二分类变量的资料,可以用来检验自变量和因变量存不存在线性趋势。 注意和Cochran-Mantel-Haenszel检验区分,CMH检验是研究两个分类变量之间关联性的一种检验方法。但有时数据除了我们研究的变量外,还混杂或隐含了其它的变量,如果将这些变量纳...
💡专注R语言在🩺生物医学中的使用 Cochran Armitage检验是一种线性趋势检验,常用于自变量是有序分类变量,而因变量是二分类变量的资料,可以用来检验自变量和因变量存不存在线性趋势。 注意和Cochran-Mantel-Haenszel检验区分,CMH检验是研究两个分类变量之间关联性的一种检验方法。但有时数据除了我们研究的变量外,还混杂...
在实际操作中,可以通过R语言、SAS系统、SPSS软件进行Cochran-Armitage检验,其中R语言的CochranArmitageTest()函数默认采用等距赋值方法。同时,Logistic回归和CMH检验(即Correlation统计量)也是分析线性趋势的常见方法。SPSS和SAS系统同样提供了Cochran-Armitage检验的功能,但SPSS默认使用原始数值,而SAS系统可以...
Cochran-Armitage trend test,简称为CAT趋势检验,是由William Cochran和Peter Armitage提出的一种分析两个分类变量关联性的检验方法,和卡方检验不同的是,该方法要求其中一个分类变量必须只有两个类别,另外一个变量则是一个有序的分类变量。 简而言之,该方法适用于处理2 x K的分类数据,这里的K是一个有序变量, K...
SPSS能做Cochran-Armitage趋势检验吗 Cochran-Armitage (CA) 趋势检验是一种用于分析1个二分类变量和1个有序分类变量关联性的统计方法,由Cochran和Armtiage创建和完善。线性趋势检验中最常用的一种方法就是Cochran-Armitage趋势检验。因为二分类变量和有序分类变量可以列联表的形式表示,所以很多人将针对于这类资料的趋...
Cochran-Mantel-Haenszel, 简称CMH检验,是分析两个二分类变量之间关联性的一种检验方法,在2 x 2 表格数据的基础上,引入了第三个分类变量,称之为混杂变量。混杂变量的引入使得该检验可以用于分析分层样本,作为生物统计学领域的一种常用技术,该检验常用于疾病对照研究。