CNN-LSTM分类预测matlab代码 数据为Excel分类数据集。 数据集划分为训练集、验证集、测试集,比例为8:1:1 模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。 参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际...
预测效果基本介绍MATLAB实现CNN-LSTM-Attention多输入分类预测,CNN-LSTM结合注意力机制多输入分类预测。模型描述Matlab实现CNN-LSTM-Attention多变量分类预测 1.data为数据集,格式为excel,12个输入特征,输出四…
通过以上步骤,我们可以构建一个基于CNN-LSTM的数据分类预测算法。这种算法能够充分利用CNN和LSTM的优势,提取数据的空间和时序特征,并进行准确的分类预测。在实际应用中,我们可以将该算法应用于各种领域,如图像分类、文本分类和时间序列预测等。 📣 部分代码 ⛳️ 运行结果 🔗 参考文献 [1]于伸庭,刘萍.基于长...
LSTM是一种能够处理序列数据的循环神经网络模型。它通过门控机制来记忆和遗忘之前的信息,并根据当前的输入来预测下一个输出。LSTM在处理时序数据时表现出色,尤其适用于自然语言处理和语音识别等任务。 在本文的算法中,我们将CNN和LSTM结合起来,以利用它们各自的优势来处理数据分类预测问题。具体的步骤如下: 数据预处理:...
分类效果 基本描述 1.Matlab实现WOA-CNN-LSTM多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上; 2.基于鲸鱼算法(WOA)优化卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,优化参数为,学习率,隐含层节点,正则化参数; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用; ...
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用) 1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络) 使用CNN模型预测未来一天的股价涨跌 数据介绍 open 开盘价;close 收盘
本研究通过CNN+LSTM+Attention模型提高新闻文本分类的精确性的案例,结合Attention+CNN+BiLSTM锂离子电池健康、寿命预测的代码数据,深入探讨 Python 在不同领域的应用以及深度学习技术在数据处理和预测中的强大潜力,为推动相关领域的发展提供有益的参考和借鉴。
提出了一种综合了CNN、LSTM和SA的深度学习方法,用于网络入侵检测。通过结合这些技术,该方法能够提取更优化、强相关的特征,从而显著提高网络入侵检测的准确性。 在二元分类和多分类实验中,CNN-LSTM-SA方法在平均 F1 分数上超过了所有其他传统分类器,最高可达到93.26%。此外,该方法在准确率方面也表现出色,在准确度方面...
1.MATLAB实现WOA-CNN-LSTM-Attention数据分类预测,运行环境Matlab2021b及以上; 2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键...
% CNN LSTM构建卷积神经网络 layers = func_model(Nclass, Dim); % 设置训练选项 % 训练网络 net = trainNetwork(Pbk_train, Tbk_train, layers, options); % 对训练集和测试集进行预测 y_pre1 = predict(net, Pbk_train); y_pre2 = predict(net, Pbk_test); ...