label='真实值')plt.plot(df_for_testing.index[window_size:,],pred_test,color='blue',label='预测值')plt.title('Stock Price Prediction')plt.xlabel('Time')plt.xticks(rotation=45)plt.ylabel('Stock Price')plt.legend()plt.show()
BIDIRECTIONAL CNN-LSTM ARCHITECTURE TO PREDICT CNXIT STOCK PRICES 方法:论文探索应用双向卷积神经网络-长短期记忆网络(CNN-LSTM)架构来预测股票价格,特别关注CNXIT(Nifty IT)股票指数,以研究深度学习技术在捕捉历史股票价格数据中的复杂时间依赖性和空间模式方面的潜力。通过综合文献回顾,介绍Bidirectional CNN-LSTM模型...
预测算法——CNN-GRU、LSTM、BiGRU、BiLSTM-Attention 本文汇总了基于卷积神经网络(CNN)与循环神经网络(RNN)及其变体(如GRU、LSTM、BiGRU、BiLSTM)组合的多种预测算法,深入探讨了这些算法的原理、结构、优缺点以及实际应用场景。此外,本文特别介绍了结合Attention机制的CNN-RNN组合算法Attention机制通过动态权重分配让...
本文通过构建 CNN - LSTM 模型对股票价格进行预测,经过数据预处理、模型训练和评估,取得了一定的预测效果。实验结果表明,该模型能够较好地捕捉股票价格数据中的时空特征,在一定程度上提高了预测精度。然而,股票价格受到多种复杂因素的影响,模型仍存在一定的局限性。未来可以进一步优化模型结构、增加数据量、引入更多的特征...
cnnlstm做预测 lstm怎么预测 一、LSTM预测未来一年某航空公司的客运流量 给你一个数据集,只有一列数据,这是一个关于时间序列的数据,从这个时间序列中预测未来一年某航空公司的客运流量。数据形式: 二、实战 1)数据下载 你可以googlepassenger.csv文件,即可找到对应的项目数据,如果没有找到,这里提供数据的下载链接:...
python利用cnn和lstm进行时间序列预测 cnn 时间序列 本文使用CNN模型,Conv1d卷积进行时间序列的分析处理。将数据导入模型后,可以运行。但模型预测精度不高,且输出十分不稳定。此模型仅用于熟悉CNN模型的基本结构,如有错误,还望海涵。 目录 一、数据介绍 二、数据预处理...
ylabel('预测误差') grid on ylim([-50,50]); save R2.mat Num2 Tat_test T_sim2 ITAccuracy Error2 140 4.算法理论概述 基于遗传算法(Genetic Algorithm, GA)优化的CNN-LSTM(卷积神经网络-长短时记忆网络)时间序列回归预测模型,是一种结合了进化计算与深度学习的先进预测方法,旨在提高对时间序列数据未来值...
季节自回归综合移动平均(SARIMA)是一种单变量时间序列预测方法。由于目标变量显示出24小时循环周期的迹象,SARIMA是一个有效的建模选项,因为它考虑了季节影响。这可以从下面的季节分解图中观察到。 SARIMA算法要求数据是平稳的。有多种方法来检验数据是否平稳,...
1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.算法理论概述 时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,...
ylabel('预测误差') gridon ylim([-50,50]); saveR2.mat Num2 Tat_test T_sim2 IT Accuracy 163 4.算法理论概述 时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、lstm在时间序列预测中展现出显著优势。然而,...