(3)由于transformer模型实际上是由残差模块和层归一化模块组合而成,并且层归一化模块位于两个残差模块...
本文旨在介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、Transformer和Encoder-Decoder架构。 1、卷积神经网络(CNN) 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可以处理图像以提取有意义的特征并进行推理预测。 想象...
神经网络 CNN 卷积神经网络结构图 卷积神经网络与常规神经网络结构非常相似,也别是在网络得最后一层,即全连接层。 卷积神经网络能够接受多个特征图作为输入,而不是向量。 一般CNN结构依次为 1.INPUT 2.[ [ CONV…
计算机视觉(CV):Transformer也逐渐在CV领域崭露头角。在图像分类任务中,Vision Transformer(ViT)及其变体通过将图像分割成小块并将其视为序列,应用Transformer架构进行处理,取得了与传统CNN相当甚至更好的效果。在目标检测、语义分割等更复杂的CV任务中,Transformer与CNN结合的模型也展现出了强大的性能,能够更好地捕捉图...
1. Transformer 模型结构 处理自然语言序列的模型有rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer。与RNN不同的是,Transformer直接把一句话当做一个矩阵进行处理,要知道,RNN是把每一个字的Embedding Vector输入进行,隐层节点的信息传递来完成编码的工作。简而言之,Transformer直接粗暴(后面Attention也就是矩阵...
Transformer 结构示意图 该Transformer 以 CNN 编码器输出为输入,并输出f_1(x)、f_2(x)、f_3(x)、f_4(x)更具空间专注度性质的特征。本算法所设计的 Transformer 主要包括 4 个串行的模块,其中单个模块如上图所示。单个模块主要包含由一个 1x1 的卷积层,一个多头自注意力层(Multi-head Self-attention, ...
本文旨在友好地介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、transformer和 encoder-decoder架构。 闲话少说,让我们直接开始吧。 卷积神经网络 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将 CNN 想象成一个多层过滤器,可处理图像以提取有意义...
本文旨在友好地介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、transformer和encoder-decoder架构。 闲话少说,让我们直接开始吧。 02 卷积神经网络 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可处理图像以提取有意义...
Transformer 结构 首先,我们来看 Transformer 的整体结构,如下是用 Transformer 进行中英文翻译的示例图: 我们可以看到,Transformer 由两大部分组成:编码器(Encoder) 和解码器(Decoder),每个模块都包含 6 个 block。所有的编码器在结构上都是相同的,负责把自然语言序列映射成为隐藏层,它们含有自然语言序列的表达式,但没...