TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Classification from Diffusion MRI Tractography 方法:论文提出了一种名为TractGraphFormer的混合模型,将Graph CNN与Transformer结合,通过整合局部解剖信息和全局特征依赖性提升基于扩散MRI纤维束成像的性别预测性能,通过改进网络结构和实验验证,...
TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Classification from Diffusion MRI Tractography 方法:论文提出了一种名为TractGraphFormer的混合模型,将Graph CNN与Transformer结合,通过整合局部解剖信息和全局特征依赖性提升基于扩散MRI纤维束成像的性别预测性能,通过改进网络结构和实验验证,...
近年来,无数的研究者们对CNN结合Transformer这个领域的进行了大量研究,并产出了大量的学术成果。 为了帮助大家全面掌握【CNN+Transformer】的方法并寻找创新点,本文总结了最近两年【CNN+Transformer】相关的18篇顶会顶刊研究成果,这些论文、来源、论文的代码都整理好了,希望能给各位的学术研究提供新的思路。 1、SCTNet:...
混合架构:将 CNN 用于提取局部特征,Transformer 用于捕捉全局依赖关系。例如,在图像分类任务中,先用 CNN 对图像进行初步的特征提取,得到局部的纹理、形状等特征,然后将这些特征输入 Transformer 进行全局的关系建模。 例子:CVT(Convolutional Vision Transformer)模型,通过引入卷积层来增强 Vision Transformer 的局部特征提取...
本文提出了一种用于城市场景语义分割的高效混合Transformer(EHT),其利用CNN和Transformer结合学习全局-局部上下文来加强特征表征,性能优于ABCNet等网络,速度高达83.4FPS!代码将开源!作者单位:武汉大学,兰卡斯特大学等 1简介 高分辨率城市场景图像的语义分割在土地覆盖制图、城市变化检测、环境保护和经济评估等广泛的实际应用...
在计算机视觉(CV)领域,卷积神经网络(CNN)和Transformer模型各自以其独特的优势占据了重要地位。CNN通过多层卷积和池化操作,在提取图像的局部特征方面表现出色;而Transformer则凭借其强大的自注意力机制,在全局信息建模和长距离依赖捕捉方面独领风骚。近年来,随着研究的深入,研究者们开始探索将CNN和Transformer结合,以期在图...
近期一些工作努力将 CNN 和 Transformer 结合起来进行高效部署。如下图 4(b)(c) 所示,它们几乎都在浅层阶段采用卷积块,在最后一两个阶段仅堆叠 Transformer 块,这种结合方式在分类任务上是有效的。但该研究发现这些混合策略很容易在下游任务(例如分割和检测)上达到性能饱和。原因...
简介:本文介绍了在2023年国际计算机视觉与模式识别会议(CVPR)上提出的一种结合Transformer和CNN的多任务多模态图像融合方法——CDDFuse。该方法通过百度智能云一念智能创作平台等工具的辅助,实现了特征解耦和相关性驱动的特征分解,提高了融合图像的质量和下游任务的效果。文章详细阐述了技术背景、技术亮点、实现方式以及实际...
本文的整体架构和赵博士先前在IJCAI上发表的DIDFuse有继承关系,这次的亮点是1.结合CNN和当前火爆的Transformer;2.将特征解耦的思想引入了图像融合,将跨模态信息分解为共有信息和特有信息,类似于DRF等融合模型;3.两阶段训练法,第一阶段采用的输入...
双网络结构Conformer,能够将基于CNN的局部特征与基于Transformer的全局表示相结合,以增强表示学习。Conformer由一个CNN分支和一个Transformer分支组成,这两个分支由局部卷积块、自我注意模块和MLP单元的组合而成。在训练过程中,交叉熵损失函数被用于监督CNN和Transformer两个分支的训练,以获得同时具备CNN风格和Transformer风格的...