近年来,无数的研究者们对CNN结合Transformer这个领域的进行了大量研究,并产出了大量的学术成果。 为了帮助大家全面掌握【CNN+Transformer】的方法并寻找创新点,本文总结了最近两年【CNN+Transformer】相关的18篇顶会顶刊研究成果,这些论文、来源、论文的代码都整理好了,希望能给各位的学术研究提供新的思路。 1、SCTNet:...
由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大? 近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但...
Transformer与CNN的结合 近年来,Transformer模型在自然语言处理领域取得了巨大成功,并逐渐渗透到计算机视觉领域。Transformer的自注意力机制和全局特征提取能力使其成为处理复杂视觉任务的有力工具。然而,Transformer的计算资源消耗较大,而CNN则在局部特征提取和计算效率上具有优势。因此,将Transformer与CNN结合,成为提升图像融合...
本文的整体架构和赵博士先前在IJCAI上发表的DIDFuse有继承关系,这次的亮点是1.结合CNN和当前火爆的Transformer;2.将特征解耦的思想引入了图像融合,将跨模态信息分解为共有信息和特有信息,类似于DRF等融合模型;3.两阶段训练法,第一阶段采用的输入...
CNN和Transformer结合的CMT模块 LPU(local perception unit)局部感知单元: 旋转和平移是CNN中常用的增广方法,然而在ViT中通常采用绝对位置编码,每个patch都对应一个唯一位置编码,因此无法给网络带来平移不变性。我们的局部感知单元采用3x3的深度分离卷积,将卷积的平移不变形引入Transformer模块,并利用残差连接稳定网络训练: ...
具体来说,作者设计了一个Inception混合器,直接地将能够CNN和最大池化的优势移植到Transformer中用于捕获高频信息。不同于最近出现的混合架构(hybrid framework),Inception混合器通过通道分割机制,并行采用CNN+max-pooling路径和自注意力路径作为高低频混合器,带来了更高的效率,同时可以灵活对大范围内具有判别性的信息进行...
本文的整体架构和赵博士先前在IJCAI上发表的DIDFuse有继承关系,这次的亮点是1.结合CNN和当前火爆的Transformer;2.将特征解耦的思想引入了图像融合,将跨模态信息分解为共有信息和特有信息,类似于DRF等融合模型;3.两阶段训练法,第一阶段采用的输入和输出都是源图像的自监督方式,SD-Net、SFA-Fuse采用了这类思想;4....
双网络结构Conformer,能够将基于CNN的局部特征与基于Transformer的全局表示相结合,以增强表示学习。Conformer由一个CNN分支和一个Transformer分支组成,这两个分支由局部卷积块、自我注意模块和MLP单元的组合而成。在训练过程中,交叉熵损失函数被用于监督CNN和Transformer两个分支的训练,以获得同时具备CNN风格和Transformer风格的...
本文模型分为两阶段,第一阶段 CDDFuse 首先使用 Restormer 块来提取跨模态浅层特征,然后引入双分支 Transformer-CNN 特征提取器,其中 Lite Transformer (LT) 块利用长程注意力处理低频全局特征,Invertible Neural Networks (INN) 块则用来提取高频局部特征。基于嵌入的语义信息,低频特征应该是相关的,而高频特征应该是...
CoAtNet 的目标是将 CNN 和 Transformer 的优点融合到一个单一的架构中,但是混合 CNN 和 Transformer 的正确方法是什么? 第一个想法是利用已经讨论过的 MBConv 块,它采用具有倒置残差的深度卷积,这种扩展压缩方案与 Transformer 的 FFN 模块相同。除了这种相似性之外,depthwise convolution 和 self-attention 都可以表示...