自然语言处理(NLP):Transformer架构在NLP领域取得了巨大的成功,几乎成为了当前最主流的架构。例如在机器翻译任务中,Transformer - based模型(如Transformer、Bert、GPT等)能够生成高质量的翻译结果;在文本生成任务中,可以生成连贯、自然的文本内容,包括新闻写作、故事创作等;在情感分析和问答系统等任务中,也能够很好地理解...
本文旨在介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、Transformer和Encoder-Decoder架构。 1、卷积神经网络(CNN) 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可以处理图像以提取有意义的特征并进行推理预测。 想象...
论文:Mobile-Former: Bridging MobileNet and Transformer 连接MobileNet和Transformer 简述:论文提出了Mobile-Former网络结构,它结合了MobileNet和Transformer的优点,中间有双向桥接。该结构利用了MobileNet在局部处理和Transformer在全局交互方面的优势,并且桥接可以实现局部和全局特征的双向融合。Mobile-Former中的Transformer包含很...
而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码,从而实现了并行计算,大大提高了模型训练的速度。 特征抽取问题:Transformer模型通过自注意力机制和多层神经网络结构,能够有效地从输入序列中抽取丰富的特征信息,为后续的任务提供更好的支持。 工作原理 Transformer工作原理 ...
NTB 中还进行了局部和全局信息的融合,进一步提高了建模能力。最后,为了克服现有方法的固有缺陷,该研究系统地研究了卷积和 Transformer 块的集成方式,提出了 NHS 策略,来堆叠 NCB 和 NTB 构建新型 CNN-Transformer 混合架构。 NCB 研究者分析了几种经典结构设计,如下图 3 所示。...
结合CNN和Transformer的结构有以下几点优势:局部与全局的结合:CNN可以处理短距离、局部特征,而Transformer...
一文弄懂CNN/RNN/GAN/Transformer等架构 1. 引言 本文旨在友好地介绍深度学习架构,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、transformer和encoder-decoder架构。 闲话少说,让我们直接开始吧。 2. 卷积神经网络 卷积神经网络(CNN)是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,...
1. Transformer 模型结构 处理自然语言序列的模型有rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer。与RNN不同的是,Transformer直接把一句话当做一个矩阵进行处理,要知道,RNN是把每一个字的Embedding Vector输入进行,隐层节点的信息传递来完成编码的工作。简而言之,Transformer直接粗暴(后面Attention也就是矩阵...
Conformer采用并发结构,最大程度地保留局部特征和全局表示。实验表明,Conformer在ImageNet上比视觉变压器高出2.3%,在MSCOCO上比ResNet-101高出3.7%和3.6%的mAPs,分别用于目标检测和实例分割,展示了其作为通用骨干网络的巨大潜力。 Mobile-Former 论文:Mobile-Former: Bridging MobileNet and Transformer...
本文旨在友好地介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、transformer和encoder-decoder架构。 闲话少说,让我们直接开始吧。 02 卷积神经网络 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可处理图像以提取有意义...