CNN优点:局部权值共享,平移不变性可以更好提取特征以及处理高维数据;缺点:网络过深时其梯度回传变化相对于输入往往很小,出现梯度消失或爆炸的情况;解释性一般 RNN优点:相比于CNN,RNN结合序列上的时序上下文来提取特征,但是在处理序列数据时没有进行信息的过滤,在稍长序列中就会出现梯度消失、爆炸的情况 LSTM优点:LSTM...
(3)残差连接:防止梯度消失,输入可跳过隐藏层,直达下一层,反之方向传播时深层梯度更容易传回浅层 2.长短期记忆网络(Long Short-Term Memory Network,LSTM) 2.1 基本概念 定义: 是RNN的一个变体,能有效解决RNN的梯度爆炸/消失问题;在GRU基础上引入新的内部状态c,使用三种门控制记忆和遗忘 构成: c:内部状态,用于...
LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。 LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。
3. 优点与缺点 优点 特征提取能力强:CNN可以高效提取数据的空间特征,GRU捕捉时间特征,两者结合大幅提高模型表现。 计算效率高:GRU相较于LSTM,参数更少,计算速度更快,适合实时应用。 鲁棒性好:对处理缺失数据或噪声数据有较好的稳定性。 缺点 对数据量要求较高:需要大量数据进行训练以达到较好的效果。 可能出现梯度...
问:与 CNN/RNN 相比,LSTM 的缺点是什么? 答:长短期记忆 (LSTM) 网络是一种循环神经网络(RNN),旨在记住序列数据中的长期依赖性。与 CNN/RNN 相比,它具有 LSTM 的一些缺点。他们是: 复杂性:LSTM 比传统的 RNN 更复杂。此外,参数数量的增加会使它们更容易出现过度拟合。
2.2.2 LSTM的缺点 计算复杂度高:相较于简单的RNN,LSTM的结构更复杂,包含更多的参数(如多个门和...
本文将简要介绍四种常见的NLP模型:神经网络、循环神经网络(RNN)、卷积神经网络(CNN)以及长短期记忆网络(LSTM),并通过直观比较帮助读者理解它们的优缺点。 一、神经网络 神经网络是一种模拟人脑神经元结构的计算模型,由输入层、隐藏层和输出层组成。在NLP中,神经网络可以通过学习大量文本数据来提取特征,进而完成诸如文本...
内存需求低于 LSTM 和 GRU,因为每一层只有一个过滤器。换句话说,过滤器的总数取决于层数(而不是输入长度)。 但是TCN也有两个明显的缺点: 在评估期间,TCN 接收原始序列直至所需的历史长度,而 RNN 可以丢弃固定长度的块(输入的一部分),因为它消耗它们并仅保留隐藏状态形式的摘要。 因此,在评估过程中,TCN 可能需...
在这里,我们可以把我们的CNN、RNN以及Transformer看作抽取数据特征的特征抽取器。下面,本文将为大家简单介绍RNN、CNN及NLP新宠Transformer的基本结构及其优缺点。 循环神经网络RNN# 传统RNN# 在2018年以前,在NLP各个子领域的State of Art的结果都是RNN(此处包含LSTM、GRU等变种)得到的。为什么RNN在NLP领域能够有如此...