CNN(Convolutional Neural Network)和LSTM(Long Short-Term Memory)结合起来常用于处理序列数据,特别是时间序列数据或具有空间结构的序列数据。这种结合可以有效地捕捉序列数据中的时空特征。 一种常见的方法是使用CNN来提取序列数据中的空间特征,然后将提取的特征序列输入到LSTM中进行时间建模。这种结合可以充分利用CNN在捕...
在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。 CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相...
x = Dropout(0.3)(x) lstm_out = CuDNNLSTM(50, return_sequences=True)(x) lstm_out = Dropout(0.3)(lstm_out) # attention_mul = attention_3d_block(lstm_out) attention_mul = attention_block(lstm_out, window_size) attention_mul = Flatten()(attention_mul) output = Dense(1, activation='...
1.data为数据集,格式为excel,单变量时间序列预测,输入为一维时间序列数据集; 2.CNN_LSTM_AttentionTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。 4.注意力机制模块: SEBlock(Squeeze-and-Excit...
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。鲸鱼...
本文设计并实现的基于Attention机制的CNN-LSTM模型(以下简称为CLATT模型)一共分为五层,具体结构与原理如图所示。 第一层是输入层。规定输入数据的格式(批大小,时间步数,特征维度),将批大小默认为1,时间 步数记为t,特征维度记为n,则一条样本可表示为一个实数序列矩阵Rt×n,记xi 为Rt×n中第i个时间步数据的向量...
高效涨点新思路: CNN-LSTM-Attention!神经网络时间序列预测代码逐行解读!高效涨点新思路: CNN-LSTM-Attention!神经网络时间序列预测代迪哥带你学CV编辑于 2024年12月11日 21:31 CNN-LSTM-LSTM模型源码资料 以及15篇最新CNN-LSTM-LSTM模型论文PDF+源码资料,已经打包好了!
2024年07月25日 21:21 关注 源码资料+60GAI精选资料包收藏 4评论 UP主投稿的视频 热门评论(0) 按热度 请先登录后发表评论 (・ω・) 表情 发布 看看下面~来发评论吧打开App,查看更多精彩内容 浏览方式(推荐使用) 哔哩哔哩 你感兴趣的视频都在B站 打开...
performance['Multihead attention'] = cnn_lstm_attention_model.evaluate(conv_window.test, verbose=0) 最后将各个模型的预测效果绘制成柱状图对比如下: 很遗憾对CNN+LSTM添加两种注意力机制都没有取得更好的效果,当然这并不能说明注意力机制不适合股指收益率预测,采用不同层组合、不同参数可能会取得完全不同的效...
cnn+lstm+attention对时序数据进行预测 3、相关技术 BiLSTM:前向和方向的两条LSTM网络,被称为双向LSTM,也叫BiLSTM。其思想是将同一个输入序列分别接入向前和先后的两个LSTM中,然后将两个网络的隐含层连在一起,共同接入到输出层进行预测。 BiLSTM attention注意力机制 ...