我们可以看出,32*32尺寸的彩色图片是不够清晰的,所以相比于MNIST数据集,cifar 10 数据集更为复杂,但利用卷积神经网络进行计算的话,准确率大概是全连接层的两倍,这就是为什么卷积神经网络比全连接网络更受欢迎的原因。 2、数据导入 方法一:使用如下代码就可以直接导入 import tensorflow as tf (x, y), (x_test...
1.cifar10数据集介绍 2.cifar10数据集读取 3.卷积神经网络搭建 3.1使用class声明网络结构 使用 Sequential 可以快速搭建网络结构,但是如果网络包含跳连等其他复杂网络结构,Sequential 就无法表示了。这就需要使用 class 来声明网络结构。 3.2卷积神经
链接:https://pan.baidu.com/s/1GyiKrMeMpXALOxuQRn_zsg密码:1a5y 从数据集提取图片 注意要先解压才能从.bin文件中提取 # coding: utf-8 # 导入当前目录的cifar10_input,这个模块负责读入cifar10数据 import cifar10_input # 导入TensorFlow和其他一些可能用到的模块。 import tensorflow as tf import os impo...
图3Cifar10数据集示例整体架构上,VGG的一大特点是在卷积层中统一使用了3×3的小卷积核和2×2大小的小池化核,层数更深,特征图更宽,证明了多个小卷积核的堆叠比单一大卷积核带来了精度提升,同时也降低了计算量。以VGG-16网络为基础疯狂调参,最终达到了90.97%的准确率。训练代码### 第一步 载入数据###im...
图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。 CIFAR-10 的图片样例如图所示。 神经网络结构如下图: 经过第一层卷积后图像尺寸没有变化,那么我们就要计算一下卷积层的相关参数。用下方公式就可以得出相关参数。 应为我们输入图像是通道数为3,大小是32*32的,所以Hin就是32,不...
CIFAR10数据集分类准确率排行 Baseline 搭建一个一层卷积(使用6个5*5的卷积核,步长是1,使用全零填充;2*2的池化核,使用最大池化,池化步长是2,使用全零填充)、两层全连接(分别是128个神经元和10个神经元-因为CIFAR10是十分类)的网络 利用tf.keras.Sequential模型 以及class定义 两种方式都可以构建上图的基础CNN...
图3Cifar10数据集示例 整体架构上,VGG的一大特点是在卷积层中统一使用了3×3的小卷积核和2×2大小的小池化核,层数更深,特征图更宽,证明了多个小卷积核的堆叠比单一大卷积核带来了精度提升,同时也降低了计算量。以VGG-16网络为基础疯狂调参,最终达到了90.97%的准确率。
在计算机视觉领域中,CIFAR-10数据集是一个经典的基准数据集,广泛用于图像分类任务。本文将介绍如何使用PyTorch框架构建一个简单的卷积神经网络(CNN),并在CIFAR-10数据集上进行训练和评估。通过本文,您将了解到数据预处理、模型定义、训练过程及结果可视化的完整流程。
该数据集被分成50000和10000两部分,50000是training set,用来做训练;10000是test set,用来做验证。 图3Cifar10数据集示例 整体架构上,VGG的一大特点是在卷积层中统一使用了3×3的小卷积核和2×2大小的小池化核,层数更深,特征图更宽,证明了多个小卷积核的堆叠比单一大卷积核带来了精度提升,同时也降低了计算量。