CIFAR-10数据集分为5个batch的训练集和1个batch的测试集,每个batch包含10,000张图片。每张图像尺寸为32*32的RGB图像,且包含有标签。一共有10个标签:airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck十个类别。 我在CIFAR-10网站中下载的是[CIFAR-10 python version](http://www.cs.toronto...
CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( a叩lane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck...
CIFAR-10数据集共有60 000幅彩色图像,这些图像是32×32像素的,分为10类,每类6 000幅图,如图7-9所示。这里面有50 000幅图用于训练,构成了5个训练批,每一批10 000幅图;另外,10 000幅用于测试,单独构成一批。测试批的数据取自100类中的每一类,每一类随机取1000幅。抽剩下的就随机排列组成训练批。注意,一...
Cifar10数据集Cifar10是一个由彩色图像组成的分类的数据集(MNIST是黑白数据集),其中包含了飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车10个类别(如图3所示),且每个类中包含了1000张图片。整个数据集中包含了60000张32×32的彩色图片。该数据集被分成50000和10000两部分,50000是training set,用来做训练...
cifar10的10个类别 CIFAR-10是一个常用的图像分类数据集,包含10个类别,分别是: 1. 飞机(airplane) 2. 汽车(automobile) 3. 鸟类(bird) 4. 猫(cat) 5. 鹿(deer) 6. 狗(dog) 7. 青蛙(frog) 8. 马(horse) 9. 船(ship) 10. 卡车(truck)...
CIFAR-10数据集由60000张3×32×32的 RGB 彩色图片构成,共10个分类。50000张训练,10000张测试(交叉验证)。这个数据集最大的特点在于将识别迁移到了普适物体,而且应用于多分类,是非常经典和常用的数据集。 这个数据集网上可以下载,我直接给大家下好了,放在云盘里,需要的自行领取。
CIFAR-10数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。 下面这幅图就是列举了这10个分类,每一类展示了随机的10张图片: 该数据集有有如下三种版本: ...
CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3 * 32 * 32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。
CIFAR-10是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck ...