进一步,我们找到huggingface上chatglm2-6b的tokenizer代码,看一下build_prompt方法 tokenization_chatglm.py 其中eos_token=,很容易得出ChatGLM2的多轮对话数据的组织格式如下,表示模型的生成结束符。 [Round 1] 问:{input1} 答:{target1} [Round 2] 问:{input2} 答:{target2} [Round 3] 问:{input3} 答...
https://github.com/THUDM/ChatGLM2-6B/blob/main/ptuning/main.py#L180 可以看到模型最终的输入是由prompt、answer和结束符拼接而成。其中prompt是由tokenizer.build_prompt(query,history)得到的,也就是将历史对话和当前轮次的用户输入进行拼接,而answer则是当前轮次的回复。 tokenizer的build_prompt方法如下: 通...
Cuda compilation tools, release11.3, V11.3.109 Build cuda_11.3.r11.3/compiler.29920130_0 /mnt/workspace/ChatGLM2-6B>conda--versionconda23.3.1 /mnt/workspace/ChatGLM2-6B>pytorch--versionbash: pytorch:commandnot found /mnt/workspace/ChatGLM2-6B>pip show torch Name: torch Version:1.12.1+cu113...
build_prompt(query, history) prompt = cfg.source_prefix + prompt a_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True, max_length=cfg.max_source_length) b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True, max_length=cfg.max_target_...
example['context']=self.tokenizer.build_prompt(query=data[self.prompt_col],history=data.get(self.history_col,None))example['target']=data[self.response_col]returnexample def__getitem__(self,index):example=self.get(index)a_ids=self.tokenizer.encode(text=example['context'],add_special_tokens=...
`prompt`由`tokenizer.build_prompt(query, history)`生成,包含了历史对话和当前轮次用户输入的拼接。`answer`则为当前轮次的回复。通过查看huggingface上`chatglm2-6b`的tokenizer代码,我们发现`build_prompt`方法中包含了结束符`eos_token`,揭示了ChatGLM2多轮对话数据组织格式的关键点。对于`labels`,...
.build_prompt('Q3', [('Q1', 'A1'),('Q2', 'A2')]) Out[1]: '[Round 1]\n\n问:Q1\n\n答:A1\n\n[Round 2]\n\n问:Q2\n\n答:A2\n\n[Round 3]\n\n问:Q3\n\n答:' ''' def build_prompt(self, query, history=None): if history is None: history = [] prompt = "" ...
os_name = platform.system() clear_command = 'cls' if os_name == 'Windows' else 'clear' stop_stream = False def build_prompt(history): prompt = "欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序" for query, response in history: prompt += f"\n\n用户...
build/bdist.linux-x86_64/egg/paddlenlp/transformers/ernie_m/tokenizer.py to tokenizer.cpython-310.pyc byte-compiling build/bdist.linux-x86_64/egg/paddlenlp/transformers/ernie_m/fast_tokenizer.py to fast_tokenizer.cpython-310.pyc byte-compiling build/bdist.linux-x86_64/egg/paddlenlp/transformers...
prompt +="[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i +1, old_query, response) prompt +="[Round {}]\n\n问:{} -> \n\n答:".format(len(history) +1, query) returnprompt print(build_inputs('味道不太行',history=his)) ...