ChatGLM2-6B和ChatGLM-6B是中英双语对话模型,基于General Language Model (GLM)架构,具有不同的参数规模和特性。ChatGLM2-6B在ChatGLM-6B的基础上增加了Multi-Query Attention和Causal Mask等新特性,提高了生成速度和显存占用优化。训练自己数据集的步骤如下: 数据准备:将数据集转换成模型训练所需的格式,包括输入和...
ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用**6G**左右, **优点**: 1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步降低到 10GB(INT8...
微调后的ChatGLM2-6B模型可以应用于多种场景,如智能客服、知识问答、文本创作等。通过不断优化和调整,模型可以逐渐适应特定领域的需求,提供更加精准和个性化的服务。 结论 使用自有数据集微调ChatGLM2-6B模型是一项具有挑战性的任务,但通过精心准备数据集、合理设置训练参数和不断优化模型配置,可以显著提升模型在特定任...
2、更改dataset_info.json文件,新增刚才的文件索引 四、开始训练 1、还是先安装相关依赖:pip install -r requirements.txt 2、采用lora微调模型,设置数据集dataset,更改模型地址--model_name_or_path,执行该sh 3、测试 4.输出微调后模型 会默认输出到项目文件夹的model目录 五、其他 1、建议使用conda虚拟环境 2、...
1. 在*** Running training ***下面打印出训练数据集样本数量(Num examples)、训练轮数(Num Epochs)等超参数。 2. 3. 2. 前4行打印了batch size及优化信息,如每设备batch size、总batch size、梯度累积步数、总优化步数等。 4. 5. 3. 打印了模型的参数量(Number of trainable parameters),这里是...
ChatGLM2-6B多轮对话训练方式ChatGLM2是一个 经过指令微调的chat模型,微调时遵从官方的数据组织格式,才能达到最优效果。对于预训练模型,可以自由设计训练数据的组织格式;对于chat模型,最好遵从官方的数据组织…
()# 如果内存不足,可以直接加载量化后的模型model =AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).cuda()# 如果没有 GPU 硬件的话,也可以在 CPU 上进行对话,但是对话速度会很慢,需要32GB内存(量化模型需要5GB内存)model =AutoModel.from_pretrained("THUDM/chatglm2-6b",...
ChatGLM2-6B 回答:明显可以看出,ChatGLM2-6B 相比于上一代模型响应速度更快,问题回答精确度更高,且拥有更长的(32K)上下文!基于 P-Tuning 微调 ChatGLM2-6B ChatGLM2-6B 环境已经有了,接下来开始模型微调,这里我们使用官方的 P-Tuning v2 对 ChatGLM2-6B 模型进行参数微调,P-Tuning v2 将需要微调...
之前教过大家利用 langchain + ChatGLM-6B 实现个人专属知识库,非常简单易上手。最近,智谱 AI 研发团队又推出了 ChatGLM 系列的新模型 ChatGLM2-6B,是开源中英双语对话模型 ChatGLM-6B 的第二代版本,性能更强悍。