ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1....
在对话界面中,可以与ChatGLM2-6B模型进行交互,进行对话。 五、产品关联:千帆大模型开发与服务平台 在完成ChatGLM2-6B模型的本地化安装部署后,可以借助百度智能云的千帆大模型开发与服务平台,进一步开发和优化模型。千帆大模型开发与服务平台提供了丰富的工具和资源,帮助开发者快速构建和部署高质量的AI模型。通过该平台...
ChatGLM2-6B是由智谱AI与清华KEG实验室发布的中英双语对话模型,具备强大的推理性能、效果、较低的部署门槛及更长的上下文,在MMLU、CEval等数据集上相比初代有大幅的性能提升。本文介绍了相关API。 接口描述 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台...
第一代的ChatGLM2-6B是一个非常优秀的聊天大语言模型。它的部署成本很低,完全版本仅需13GB显存即可进行推理,微调需要14GB显存,在消费级显卡即可使用。而其INT4量化版本则最低仅需6GB即可推理。相比较第一代,第二大的ChatGLM2-6B模型主要有四点升级:ChatGLM2-6B升级1:基座模型升级,性能更加强大 第二代的...
支持超长上下文对大语言模型(LLM)意味着什么 所谓LLM的上下文长度其实就是LLM背后模型的输入长度。大多数大语言模型的输入长度都在2K以内。以输入长度是2048为例。这个长度的含义是模型一次性接受输入的tokens数量为2048个。根据OpenAI官方的介绍,一般tokens换算到单词的比例是75%左右,这意味着2K模型的输入一般只能支持...
AI大模型ChatGLM2-6B 第一篇 - 基础环境搭建 硬件环境# cpu i5-13600k 内存64G 显卡rtx3090 软件环境# window 11 专业版 22H2 n卡驱动:526.47 wsl2 ubuntu 22.04 安装nvidia-cuda-toolkit# 打开wsl2的ubuntu,安装nvidia驱动程序 sudoaptupdatesudoaptupgradesudoubuntu-drivers devicessudoaptinstallnvidia-driver...
为了满足客户对大模型的使用需求,UCloud镜像市场上线了Alpaca-LoRA、ChatGLM、T5、MiniGPT-4、Stable Diffusion、LlaMA2及Milvus向量数据库等开源模型的部署及算力调度,用户可快速构建大语言模型的微调或推理环境。 近半年来,UCloud对多款主流大语言模型进行了调研,针对其训练方法和模型特点进行逐一分析,方便大家更加深入...
ChatGLM2-6B和ChatGLM-6B12是由清华大学的KEG和数据挖掘小组(THUDM)共同开发和发布的两个开源中英双语对话模型。这两款模型基于GLM模型的混合目标函数,在1.4万亿中英文tokens的庞大数据集上进行了训练,并进行了模型对齐2。主要目标是生成流畅、自然、有趣和有用的对话回复3。
模型微调训练 ChatGLM2-6B/ptuning/train.sh PRE_SEQ_LEN=128 #soft prompt 长度 LR=2e-2 #训练学习率 NUM_GPUS=2 #卡的个数 torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \ --do_train \ --train_file data/train.json \ #模型训练数据 --validation_file data/dev...