deep prompt tuning增加了continuo us prompts的能力,并缩小了跨各种设置进行微调的差距,特别是对于小型模型和困难任务 上图左边为P-Tuning,右边为P-Tuning v2。P-Tuning v2层与层之间的continuous prompt是相互独立的。 ChatGLM2-6B 模型下载 huggingface 地址:https://huggingface.co/THUDM/chatglm2-6b/tree/main...
1.更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了GLM的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取...
在部署ChatGLM2-6B之前,需要先下载预训练好的模型。可以从官方仓库或其他可靠的源下载ChatGLM2-6B的模型文件。确保下载的模型文件完整无误。三、数据准备在进行模型训练之前,需要准备相应的数据集。对于ChatGLM2-6B来说,需要准备中英双语的数据集,用于模型的训练和微调。可以从公开数据集或自建数据集中选择适合的数据...
ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入了多项新特性: 更强大的性能:ChatGLM2-6B使用了GLM的混合目标函数,经过了1.4T中英标识符的预训练与人类偏好对齐训练。评测结果显示,相比于初代模型,ChatGLM2-6B在MMLU、CEval、GSM8...
更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性...
ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。更长的上下文:基于 Flash...
基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能...
ChatGLM2-6B 介绍 ChatGLM2-6B 在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入了如下新特性:更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代...
更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了基座模型。ChatGLM2-6B 使用了GLM的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在...
更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型, ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%) 等数据集上的...