ChatGLM2是一个经过指令微调的chat模型,微调时遵从官方的数据组织格式,才能达到最优效果。 对于预训练模型,可以自由设计训练数据的组织格式;对于chat模型,最好遵从官方的数据组织格式。 源码分析 在分析源码之前,先抛出一个结论:ChatGLM2的多轮对话训练方式如下图所示,只有最后一轮对话内容参与计算loss,其他的Assistant...
ChatGLM2-6B在ChatGLM-6B的基础上增加了Multi-Query Attention和Causal Mask等新特性,提高了生成速度和显存占用优化。训练自己数据集的步骤如下: 数据准备:将数据集转换成模型训练所需的格式,包括输入和输出序列的标记化、对齐等。 预训练:使用公开数据集对模型进行预训练,以学习语言表示和生成能力。 微调:使用自己...
5. 单击确定,提交训练并返回训练任务列表页。 等待任务状态为成功,则训练完成。 5.查看训练结果 将训练结果导出为模型,并将其挂载到开发环境中,在开发环境中加载训练后的模型并用其对 test.json 进行推理,看看经过专项训练后的模型是否会生成更好的广告词。 【A】导出为模型 1. 切换到结果页。 2. 单击右上方...
现在来做训练前的准备 代码语言:shell 复制 cdptuing pip3installrouge_chinese nltk jieba datasets transformers[torch]gitclone https://huggingface.co/THUDM/chatglm2-6b 现在上传你的训练集和验证集,然后可以开始训练 修改train.sh并运行以开始训练
ChatGLM2-6B和ChatGLM-6B是具有巨大潜力的中英双语对话模型,经过1.4万亿中英文tokens数据集的训练,它们能够生成流畅、自然、有趣和有用的对话回复。在各项对话任务中,ChatGLM2-6B表现优异,性能提升显著,尤其在数学任务上,性能提高了571%。它们支持更长的上下文长度和更高效的推理,具有广泛的应用场景,可用于构建聊天机...
由 ChatGLM-6B 的 2K 扩展到了 32K ,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的...
分为两个阶段,分别是多任务训练目标的预训练阶段和基于有标签语料的微调阶段。 BERT的预训练目标 • 掩码语言模型:Masked Language Model(MLM),目的是提高模型的语义理解能力,即对文本进行随机掩码,然后预测被掩码的词。 • 下句预测:Next Sentence Prediction(NSP),目的是训练句子之间的理解能力,即预测输入语句对...
ChatGLM2-6B和ChatGLM-6B是具有巨大潜力的中英双语对话模型,经过1.4万亿中英文tokens数据集的训练,它们能够生成流畅、自然、有趣和有用的对话回复。在各项对话任务中,ChatGLM2-6B表现优异,性能提升显著,尤其在数学任务上,性能提高了571%。它们支持更长的上下文长度和更高效的推理,具有广泛的应用场景,可用于构建聊天机...
四、开始训练 1、还是先安装相关依赖:pip install -r requirements.txt 2、采用lora微调模型,设置数据集dataset,更改模型地址--model_name_or_path,执行该sh 3、测试 4.输出微调后模型 会默认输出到项目文件夹的model目录 五、其他 1、建议使用conda虚拟环境 ...