为了满足客户对大模型的使用需求,UCloud镜像市场上线了Alpaca-LoRA、ChatGLM、T5、MiniGPT-4、Stable Diffusion、LlaMA2及Milvus向量数据库等开源模型的部署及算力调度,用户可快速构建大语言模型的微调或推理环境。 近半年来,UCloud对多款主流大语言模型进行了调研,针对其训练方法和模型特点进行逐一分析,方便大家更加深入...
ChatGLM2-6B是由智谱AI与清华KEG实验室发布的中英双语对话模型,具备强大的推理性能、效果、较低的部署门槛及更长的上下文,在MMLU、CEval等数据集上相比初代有大幅的性能提升。本文介绍了相关API。 功能介绍 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台...
大语言模型的训练方式基本是海量无标签数据预训练,下游再用有标签数据微调。从GPT3开始,ChatGLM、LLaMA系列模型也都引入了基于人类反馈的强化学习,让模型与人类偏好对齐,这是一个很酷的想法。 ChatGLM2-6B在K8S上的实践 获取项目代码和模型文件,相关链接如下 (https://github.com/THUDM/ChatGLM2-6B/tree/main)。
ChatGLM2-6B的升级部分 第一代的ChatGLM2-6B是一个非常优秀的聊天大语言模型。它的部署成本很低,完全版本仅需13GB显存即可进行推理,微调需要14GB显存,在消费级显卡即可使用。而其INT4量化版本则最低仅需6GB即可推理。相比较第一代,第二大的ChatGLM2-6B模型主要有四点升级:ChatGLM2-6B升级1:基座模型升级...
6b \ # 加载模型文件地址,可修改为本地路径 --output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \ # 保存训练模型文件地址 --overwrite_output_dir \ --max_source_length 64 \ # 最大输入文本的长度 --max_target_length 128 \ --per_device_train_batch_size 1 \ --per_device_eval...
ChatGLM2-6B和ChatGLM-6B是中英双语对话模型,基于General Language Model (GLM)架构,具有不同的参数规模和特性。ChatGLM2-6B在ChatGLM-6B的基础上增加了Multi-Query Attention和Causal Mask等新特性,提高了生成速度和显存占用优化。训练自己数据集的步骤如下: 数据准备:将数据集转换成模型训练所需的格式,包括输入和...
自3月14日发布以来, ChatGLM-6B 深受广大开发者喜爱,截至 6 月24日,来自 Huggingface 上的下载量已经超过 300w。为了更进一步促进大模型开源社区的发展,我们再次升级 ChatGLM-6B,发布 ChatGLM2-6B 。在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ...
ChatGLM2-6B和ChatGLM-6B具有一系列优势和限制,总结如下: 优点: 支持中英双语:两个模型均可进行中英文对话和互译,提供多语言交流能力。 性能强大:在多项对话任务中,ChatGLM2-6B和ChatGLM-6B都有高准确度和流畅度,生成自然、有趣和实用的对话回复。
近半年来,通过对多款主流大语言模型进行了调研,我们针对其训练方法和模型特点进行逐一分析,方便大家更加深入了解和使用大模型。本文将重点分享ChatGLM2-6B基于UCloud云平台的UK8S实践应用。 01各模型结构及特点 自从2017年6月谷歌推出Transformer以来,它已经成为自然语言处理领域的重要里程碑和核心模型之一。从2018年至今...