ChatGLM-6B: 单卡版本开源的对话模型充分的中英双语预训练:ChatGLM2-6B 在 1:1 比例的 中英语料上训练了 1.4T 的 token 量,兼具双语能力 , 相比于ChatGLM-6B初代模型,性能大幅提升。 •较低的部署门槛:FP16 半精度下,ChatGLM-6B 需要 至少 13GB 的显存进行推理,结合模型量化技术,这一 需求可以进一步降...
ChatGLM-6B是清华系ChatGPT的一员,它继承了清华大学KEG实验室与智谱AI公司于2022年8月发布的GLM-130B模型(一种包含多目标函数的自回归预训练语言模型)的优势。相比于其他预训练语言模型(如BERT、GPT-3以及T5),GLM架构具有以下特点:GLM架构可以同时支持自回归(AR)、自编码(AE)和融合编码(FE)三种目标函...
中文ChatGLM-6B预训练模型 5.2万提示指令微调演示 #小工蚁 #chatgpt #chatglm - 小工蚁于20230330发布在抖音,已经收获了21.0万个喜欢,来抖音,记录美好生活!
充分的中英双语预训练: ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统FFN结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。较低的部署门槛: ...
本文结合目前在中文应用场景中具有出色表现的开源预训练大模型 ChatGLM-6B,介绍如何通过对其开源 Prompt-tuning 代码进行极少量的修改,并结合第四代英特尔® 至强® 可扩展处理器[1]的全新内置 AI 加速引擎——英特尔® 高级矩阵扩展 (Intel® Advanced Matrix Extension,简称英特尔® AMX)及配套的软件工具...
ChatGLM-6B提供了cli_demo.py和web_demo.py两个文件来启动模型,一个是使用命令行进行交互,另一个是使用本机服务器进行网页交互。根据需要修改代码,从本地文件目录加载预训练模型。 在终端输入python cli_demo.py或python web_demo.py就可以成功启动模型了。
P-Tuning 所做的就是根据具体的任务,对预训练的模型进行微调,让它更好地适应于具体任务。相比于重新训练一个新的模型,微调可以大大节省计算资源,同时也可以获得更好的性能表现。ChatGLM-6B 部署 这里我们还是白嫖阿里云的机器学习 PAI 平台,使用 A10 显卡,这部分内容之前文章中有介绍。免费部署一个开源大模型...
ChatGLM2-6B在ChatGLM-6B的基础上增加了Multi-Query Attention和Causal Mask等新特性,提高了生成速度和显存占用优化。训练自己数据集的步骤如下: 数据准备:将数据集转换成模型训练所需的格式,包括输入和输出序列的标记化、对齐等。 预训练:使用公开数据集对模型进行预训练,以学习语言表示和生成能力。 微调:使用自己...
充分的中英双语预训练: ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。 优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统FFN结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。 较低的部署门槛: FP1...
训练ChatGLM3-6B 模型,显卡显存建议选择等于大于 16GB 以上的显卡,因为 ChatGLM3-6B 模型载入后会占用大约 13GB 左右显卡显存。 选择完成后创建实例,然后点击 JupyterLab,进入终端。#autodl#恒源云#矩池云#算力云#恒源云 实例迁移#autodl 官网#autodi#GpuMall#GPU云#AutoDL#AotuDL 算力云#GpuMall智算云#AI#大...