论文链接:《Training language models to follow instructions with human feedback》 动机 GPT的另一种微调探索,使用用户指令和偏好答案来微调GPT模型,让模型生成的内容更符合用户的意图,更真实、更有用(Alignment,对齐过程)。这么做的出发点是面向一种经典的应用场景,用户给一条指令声明意图,期望模型生成有用、无害...
这个模型效果一般,但是它开源了 52k 条挺有价值的指令微调训练数据,它是用了一个用 ChatGPT 作为老师来生成更多训练数据的方法(paper 的名字是:SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions)来训练的模型。同时,alpaca 是一个 LoRA 方法下的模型。self-instruct 这个...
所以,就是 ChatGPT,chat+GPT。我们要进行聊天,本质上,就是让模型‘要能听懂我们的指令’。所以,OpenAI 接着又有一篇重磅论文Training language models to follow instructions with human feedback,它在 OpenAI 的官网上,是另一个名字Aligning language models to follow instructions。 顾名思义,就是要通过一些‘...
早在去年六月,Meta就开源过一个大型语言模型OPT-668,并赶在ChatGPT之前就已发布了基于OPT模型的聊天机器人BlenderBot3。但这款聊天机器人比起ChatGPT的火爆截然不同,不仅回答的问题出现大量错误,还会回复负面言论及错误信息,并没有在行业内激起太多波澜。 接着,去年11月Meta AI联合 Papers with Code发布了另一款大...
这个模型效果一般,但是它开源了 52k 条挺有价值的指令微调训练数据,它是用了一个用 ChatGPT 作为老师来生成更多训练数据的方法(paper 的名字是:SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions)来训练的模型。同时,alpaca 是一个 LoRA 方法下的模型。self-instruct 这个思路,非常有趣,其实...
测试结果优于GPT-3 LLaMA采用的模型架构? 在架构选型上与 GPT 系列类似,LLaMA 也是一个建立在 Transformer 基础架构上的自回归语言模型(Autoregression Language Model),并做出了部分改进: lPre-normalization VS GPT3 为了提高训练的稳定性,我们对每个变换子层的输入进行规范化,而不是对输出进行规范化。并使用Zhang...
与BERT不一样的是,GPT系列则通过变换器网络的解码器实现了自回归语言模型(Autoregressive language model)[9],采用多任务训练的方法训练模型,模型如图12所示。自回归在时间序列分析中非常常见,比如ARMA,GARCH等都是典型的自回归模型。在语言模型中,自回归模型每次都是根据给定的上下文从一组词元中预测下一个词元,并且...
这可能导致 BLOOM 性能更差。作为对比,GPT3 来自 Common Crawl 语料的占比则要高得多,而它们是多样的和来自广泛领域的,这也可能是 GPT-3 能够作为首个通用聊天机器人 ChatGPT 的基础模型的原因之一。 请注意:虽然一般来说,多样性的数据对于训练一个通用的 LLM(Large Language Model,大规模语言模型)是重要的,但...
这可能导致 BLOOM 性能更差。作为对比,GPT3 来自 Common Crawl 语料的占比则要高得多,而它们是多样的和来自广泛领域的,这也可能是 GPT-3 能够作为首个通用聊天机器人 ChatGPT 的基础模型的原因之一。 请注意:虽然一般来说,多样性的数据对于训...
这可能导致 BLOOM 性能更差。作为对比,GPT3 来自 Common Crawl 语料的占比则要高得多,而它们是多样的和来自广泛领域的,这也可能是 GPT-3 能够作为首个通用聊天机器人 ChatGPT 的基础模型的原因之一。 请注意:虽然一般来说,多样性的数据对于训练一个通用的 LLM(Large Language Model,大规模语言模型)是重要的,但...