RDA/CCA分析又称多元直接梯度分析,主要用来检测环境因子(如气体成分)、样本、菌群三者间的关系或者两两之间的关系。 RDA/CCA分析将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,其中RDA是基于线性模型进行分析,CCA是基于单峰模型进行分析。 RDA或CCA模型的选择原则: 先用species-sample数据(97%相似性...
通过同时做RDA和CCA我们发现,在RDA中环境因子对物种分布的解释量更高。对结果的解读:constrained(约束)指自变量(环境)矩阵能对因变量矩阵(物种)的整体解释量,如RDA分析中的79.97%和CCA分析中的69.20%。unconstrained(非约束)指还剩下的没有被解释的部分,如RDA分析中的20.03%和CCA分析中的30.80%。如...
RDA分析(Redundancy analysis),即冗余分析,对比主成分分析可以发现,其实冗余分析就是约束化的主成分分析。冗余分析(redundancy analysis, RDA)或者典范对应分析(canonical correspondence analysis, CCA)是基于对应分析(correspondence analysis, CA)发展而来的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境...
冗余分析(redundancy analysis, RDA)或者典范对应分析(canonical correspondence analysis, CCA)是基于对应分析(correspondence analysis, CA)发展而来的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,故又称多元直接梯度分析。此分析是主要用来反映菌群与环境因子之间的关系。接下来我们来尝试...
冗余分析(redundancy analysis, RDA)或者典范对应分析(canonical correspondence analysis, CCA)是基于对应分析(correspondence analysis, CA)发展而来的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,故又称多元直接梯度分析。此分析是主要用来反映菌群与环境因子之间的关系。接下来我们来尝试...
当然,想绘制上述高分文献中的同款图形,还需要对CCA/RDA图形进行一些些调整,比如添加外围椭圆,改变线条、样本点样式等等。 对图形进行细调,可以使用AI等软件;但是使用动态CCA/动态RDA两个在线动态工具就更“一步到位”了。 下面以动态RDA工具为例: 上传表格提交后,在工具页下方选择“项目编号”即可看到初始得出的图形...
RDA或者CCA是基于对应分析发展而来的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。此分析是主要用来反映菌群与环境因子之间关系。RDA是基于线性模型,CCA 是基于单峰模型。分析可以检测环境因子、样品、菌群三者之间的关系或者两两之间的关系。
PCA、PCoA和NMDS分析属于非约束性排序分析,而RDA/CCA和db-RDA分析属于约束性排序分析,即分别是在环境因子的约束条件下进行的PCA和PCoA分析。因此,一般主要利用PCA、PCoA或NMDS分析进行样本比较,反映样本间菌群结构的相似性和差异性,从而分析组间样本能否明显区分开;而RDA/CCA和db-RDA分析则多用来阐述环境因子对样本菌...
一般我们会选择CCA来做直接梯度分析。但是,如果CCA排序的效果不太好,就可以考虑换做用RDA分析。RDA或CCA选择原则:先用species-sample资料做DCA分析,看分析结果中Lengths of gradient 的第一轴的大小,如果大于4.0,就应选CCA;如果在3.0-4.0之间,选RDA和CCA均可;...
选择RDA还是CCA时,通常根据“Lengths of gradient”在DCA分析中的表现。若大于4.0,CCA是首选;在3.0到4.0之间,两者皆可;小于3.0时,RDA可能更为合适。无需在R语言中操作,图图云平台提供了一种简便的解决方案,用户可以直接登录该平台,无需注册,通过上传数据(如物种丰度表和环境因子数据)并...