简单来说 cascade R-CNN 是由一系列的检测模型组成,每个检测模型都基于不同 IOU 阈值的正负样本训练得到,前一个检测模型的输出作为后一个检测模型的输入,因此是 stage by stage 的训练方式,而且越往后的检测模型,其界定正负样本的 IOU 阈值是不断上升的。 Cascade R-CNN 的几个检测网络(Head网络)是基于不同的...
CNN系列的文章主要是RCNN,Fast RCNN, Faster RCNN, Mask RCNN, Cascade RCNN,这一系列的文章是目标检测two-stage算法的代表,这系列的算法精度高,效果好,是一类重要的方法。 论文地址:Cascade R-CNN 简要介绍 在目标检测中,IOU阈值被用来定义正样本(positive)与负样本(negative) 如果使用较低的IOU阈值,那么会...
Cascade R-CNN 是一种多阶段的目标检测器结构,旨在解决在不同 IoU(交并比)阈值下检测性能波动的问题。该方法通过构建一系列检测器,每个检测器的 IoU 阈值逐步增加,从而实现更高质量的检测结果。在训练阶段,Cascade R-CNN 采用逐步改进的重采样策略,确保所有检测器都处理相同数量的正样本,有效减少...
算法原理 Cascade R-CNN是以Faster R-CNN为基础而构建的一种级联结构对象检测算法。它引入了多个级联阶段,每个阶段都包括两个关键组件:Region Proposal Network(RPN)和Fast R-CNN。 RPN阶段:RPN负责生成候选区域。它通过滑动窗口机制和锚框技术,对输入图像中的感兴趣区域进行提议。RPN使用卷积神经网络来回归候选区域的...
Cascade R-CNN 和Integral Loss比较 Integral Loss共用pooling,只有一个stage,但有3个不共享的H,每个H处都对应不同的IoU阈值。Integral Loss存在的问题: 我们从图 4proposal分布可以看到,第一个stage的输入IoU的分布很不均匀,高阈值proposals数量很少,导致负责高阈值的detector很容易过拟合。
从Cascade RCNN的网络结构图可以看出,随着阶段加深,相应区域仍保留大量proposal,降低过拟合风险。对比知乎上关于Faster RCNN的分析,Faster RCNN的RPN生成的proposal在训练和推理阶段分布不同,训练阶段质量较高,推理阶段相对较低。而Cascade RCNN通过级联检测器,每个阶段采用递增阈值,确保了每个阶段均有...
一句话总结就是:Cascade R-CNN就是使用不同的IOU阈值,训练了多个级联的检测器。 文章详细解析 目标检测其实主要干的就是两件事,一是对目标分类,二是标出目标位置。所以,了解Faster R-CNN或者SSD的同学可能都比较清楚,为了实现这两个目标,在训练的时候,我们一般会首先提取候选proposal,然后对proposal进行分类,并且将...
Figure3(a)表示Faster RCNN,因为双阶段类型的目标检测算法基本上都基于Faster RCNN,所以这里也以该算法为BaseLine。 Figure3(b)表示迭代式的边界框回归,从图也非常容易看出思想,就是前一个检测模型回归得到的边界框坐标初始化下一个检测模型的边界框,然后继续回归,这样迭代三次后得到...
Cascade R-CNN架构清晰,移植简便,能显著提升性能2-4%。论文实验表明不同IoU阈值的detector对不同质量目标框的优化程度不同,Cascade R-CNN通过级联回归,分解回归任务,提升目标框质量。该方法简单有效,能直接集成到其它R-CNN型detector中,带来巨大性能提升。实验结果证实,Cascade R-CNN能广泛适用于多...