Detection Performance:在所有的baseline detector上,使用Cascade R-CNN均有2~4%的提升,这表明Cascade R-CNN能广泛适用于多种检测器架构中 Parameter and Timing:Cascade R-CNN的参数量增加跟stage数量有关,与baseline的detector head呈线性关系。此外,由于detector head的计算耗时相对于RPN是非常小的,Cascade R-CNN的...
cascade_rcnn和其他框架的网络结构简略图 上图中 (d) 和 (c) 很像,iterative bbox at inference是在推断时候对回归框进行后处理,即模型输出预测结果后再多次处理,而Cascade R-CNN在训练的时候就进行重新采样,不同的stage的输入数据分布已经是不同的了。 简单来说 cascade R-CNN 是由一系列的检测模型组成,每...
rcnn=[dict(assigner=dict(type='MaxIoUAssigner',pos_iou_thr=0.5,neg_iou_thr=0.5,min_pos_iou=0.5,ignore_iof_thr=-1),sampler=dict(type='RandomSampler',num=512,pos_fraction=0.25,neg_pos_ub=-1,add_gt_as_proposals=True),pos_weight=-1,debug=False),dict(assigner=dict(type='MaxIoUAssign...
论文实验表明不同IoU阈值的detector对不同质量目标框的优化程度不同,Cascade R-CNN通过级联回归,分解回归任务,提升目标框质量。该方法简单有效,能直接集成到其它R-CNN型detector中,带来巨大性能提升。实验结果证实,Cascade R-CNN能广泛适用于多种检测器架构,提升性能2~4%,且参数量增加与stage数量呈...
rcnn使用l2-loss 首先明确l2-loss的计算规则: L∗=(f∗(P)−G∗)2,∗代表x,y,w,h 整个loss :L=Lx+Ly+Lw+Lh 也就是说,按照l2-loss的公式分别计算x,y,w,h的loss,然后把4个loss相加就得到总的bouding box regression的loss。这样的loss是直接预测bbox的 ...
Cascade R-CNN 论文讲解 20:41 图片分类部署安卓 项目实战 04:58 PPT高级技巧揭秘:插入LaTeX公式,让你的组会不再愁眉苦脸! 早上好我是DJ同学 8776 1 【研究生自救指南】文献汇报PPT怎么做才能被导师夸! 早上好我是DJ同学 5466 44 半监督视频分割STM代码解读|Video Object Segmentation using Space-Time ...
在目标检测领域,IOU阈值用于区分正样本与负样本。Cascade RCNN的网络结构包含三个阶段,每个阶段的IOU阈值分别为0.5、0.6、0.7。相比Iterative BBox,Cascade RCNN每个阶段采用了不同的head,不同阶段适应不同分布,效果更优。从Cascade RCNN的网络结构图可以看出,随着阶段加深,相应区域仍保留大量...
图Figure 4代表了Cascade R-CNN不同stage的输入数据的IOU分布。 实验部分 网络参数 网络的默认设置共有4个stage,第一个stage产生RPN,另外三个stage分别设置IOU阈值为[0.5,0.6,0.7],baseline的选择,Faster R-CNN作者默认选择VGG网络,R-FCN以及FPN作者默认选择ResNet作为backbone,使用的是默认参数。
Figure3(a)表示Faster RCNN,因为双阶段类型的目标检测算法基本上都基于Faster RCNN,所以这里也以该算法为BaseLine。 Figure3(b)表示迭代式的边界框回归,从图也非常容易看出思想,就是前一个检测模型回归得到的边界框坐标初始化下一个检测模型的边界框,然后继续回归,这样迭代三次后得到...