\quad 在本文中,我们提出了一种解决这些问题的新型检测器架构Cascade R-CNN。它是R-CNN的多级扩展,其中级联更深的检测器级依次对接近的FP具有更高的选择性。依次训练R-CNN阶段的级联,使用一个阶段的输出来训练下一个阶段。这是由于观察者的动机,即回归器的输出IoU几乎总是好于输入IoU。可以在图c中进行观察,其...
Cascade R-CNN 来自论文 Cascade R-CNN: High Quality Object Detection and Instance Segmentation,主要针对 Faster R-CNN 中 R-CNN 部分 IoU 阈值选取对最终检测 bbox 质量有重大影响,而提出一种级联 R-CNN 结构,不同级采用不同 IoU 阈值来进行重新计算正负样本和采样策略来逐渐提高 bbox 质量,其主要贡献可以...
Cascade R-CNN在实际应用中具有广泛的应用场景,如人脸检测、行人检测、车辆检测等。通过Cascade R-CNN的级联结构和IOU阈值控制,可以有效地提高目标检测的精度和鲁棒性。同时,Cascade R-CNN还可以与其他目标检测算法进行结合,进一步提高目标检测的性能。 总结 Cascade R-CNN作为一种经典的目标检测算法,通过级联多个检测...
在Fast R-CNN结构中,首先计算每个proposal和gt之间的iou,通过人为的设定一个IoU阈值(通常为0.5),把这些Proposals分为正样本(前景)和负样本(背景),并对这些正负样本采样,使得他们之间的比例尽量满足(1:3,二者总数量通常为128),之后这些proposals(128个)被送入到Roi Pooling,最后进行类别分类和box回归。
1.1,Faster RCNN 回顾 先回顾下Faster RCNN的结构,下图是Faster RCNN的结构图。 training阶段和inference阶段的不同在于,inference阶段不能对proposala进行采样(因为不知道gt,自然无法计算IoU),所以RPN网络输出的300RoIs(Proposals)会直接输入到RoI pooling中,之后通过两个全连接层分别进行类别分类和bbox回归。
Parameter and Timing: Cascade R-CNN的参数量增加跟stage数量有关,与baseline的detector head呈线性关系。此外,由于detector head的计算耗时相对于RPN是非常小的,Cascade R-CNN的额外计算开销比较小 Conclusion 论文提出一个高质量的多阶段目标检测架构Cascade R-CNN,这个架构解决了训练时的过拟合问题以及推理...
1.1,Faster RCNN 回顾 先回顾下Faster RCNN的结构,下图是Faster RCNN的结构图。 training阶段和inference阶段的不同在于,inference阶段不能对proposala进行采样(因为不知道gt,自然无法计算IoU),所以RPN网络输出的300RoIs(Proposals)会直接输入到RoI pooling中,之后通过两个全连接层分别进行类别分类和bbox回归。
最近玩过检测比赛的同学应该都了解Cascade R-CNN这个算法吧,这是CVPR 2018提出的,通过级联多个检测网络达到不断优化预测结果的目的。但是和普通的级联检测器不同,Cascade R-CNN的多个检测网络是基于不同的IOU阈值进而确定不同的正负样本训练出来的,在COCO数据集上Cascade R-CNN取得了非常出色的结果,并且也成为了当前...
RCNN系列的文章主要是RCNN,Fast RCNN, Faster RCNN, Mask RCNN, Cascade RCNN,这一系列的文章是目标检测two-stage算法的代表,这系列的算法精度高,效果好,是一类重要的方法。 论文地址:Cascade R-CNN 简要介绍 在目标检测中,IOU阈值被用来定义正样本(positive)与负样本(negative) 如果使用较低的IOU阈值,那么...
Parameter and Timing: Cascade R-CNN 的参数量增加跟 stage 数量有关,与 baseline 的 detector head 呈线性关系。此外,由于 detector head 的计算耗时相对于 RPN 是非常小的,Cascade R-CNN 的额外计算开销比较小 Conclusion 论文提出一个高质量的多阶段目标检测架构 Cascade R-CNN,这个架构解决了训练时...