简单来说 cascade R-CNN 是由一系列的检测模型组成,每个检测模型都基于不同 IOU 阈值的正负样本训练得到,前一个检测模型的输出作为后一个检测模型的输入,因此是 stage by stage 的训练方式,而且越往后的检测模型,其界定正负样本的 IOU 阈值是不断上升的。 Cascade R-CNN 的几个检测网络(Head网络)是基于不同的...
简单来说 cascade R-CNN 是由一系列的检测模型组成,每个检测模型都基于不同 IOU 阈值的正负样本训练得到,前一个检测模型的输出作为后一个检测模型的输入,因此是 stage by stage 的训练方式,而且越往后的检测模型,其界定正负样本的 IOU 阈值是不断上升的。 Cascade R-CNN 的几个检测网络(Head网络)是基于不同的...
Cascade R-CNN 网络结构 网络结构如下图b, 公式表示就是这样的: 上图中b和c很像,iterative bbox at inference 是在推断时候对回归框进行后处理,即生成了之后在多次处理,而Cascade R-CNN 在训练的时候就进行重新采样,不同的stage的输入数据分布已经是不同的了。 Cascade Mask R-CNN 网络结构 受Mask R-CNN发...
CNN系列的文章主要是RCNN,Fast RCNN, Faster RCNN, Mask RCNN, Cascade RCNN,这一系列的文章是目标检测two-stage算法的代表,这系列的算法精度高,效果好,是一类重要的方法。 论文地址:Cascade R-CNN 简要介绍 在目标检测中,IOU阈值被用来定义正样本(positive)与负样本(negative) 如果使用较低的IOU阈值,那么会...
Cascade R-CNN 这篇文章是基于Faster RCNN进行改进的,Faster R-CNN网络只有一个RCNN网络,而Cascade RCNN将多个RCNN网络基于不同的IOU阈值进行级联,对检测的结果进行不断地优化。前一个RCNN网络的输出可以作为后一个RCNN网络的输入,越往后的检测模型,其界定正负样本的IOU阈值是不断上升的。
1.1,Faster RCNN 回顾 先回顾下Faster RCNN的结构,下图是Faster RCNN的结构图。 training阶段和inference阶段的不同在于,inference阶段不能对proposala进行采样(因为不知道gt,自然无法计算IoU),所以RPN网络输出的300RoIs(Proposals)会直接输入到RoI pooling中,之后通过两个全连接层分别进行类别分类和bbox回归。
与 Iterative BBox 方法相比,Cascade R-CNN 在训练阶段就通过重新采样过程调整输入数据分布,不同阶段的输入数据质量逐渐提高,有效解决了 mismatch 问题。网络结构设计上,Cascade R-CNN 由多个基于不同 IoU 阈值的检测模型组成,每个模型分别针对特定的正负样本训练,形成层次化的检测流程。在 COCO 数据...
最近玩过检测比赛的同学应该都了解Cascade R-CNN这个算法吧,这是CVPR 2018提出的,通过级联多个检测网络达到不断优化预测结果的目的。但是和普通的级联检测器不同,Cascade R-CNN的多个检测网络是基于不同的IOU阈值进而确定不同的正负样本训练出来的,在COCO数据集上Cascade R-CNN取得了非常出色的结果,并且也成为了当前...
RCNN系列算法包括CNN系列文章中的RCNN、Fast RCNN、Faster RCNN、Mask RCNN、Cascade RCNN,这些算法属于目标检测的two-stage方法,以高精度和好效果著称,是重要的研究方向。在目标检测领域,IOU阈值用于区分正样本与负样本。Cascade RCNN的网络结构包含三个阶段,每个阶段的IOU阈值分别为0.5、0.6、0...
对Cascade R-CNN网络的进一步探索实验 实验一:stage-wise的比较 下表展示了不同stage的表现,其中1,2,3分别代表单个stage的表现,1 ~ 2代表了级联1和2的表现,1 ~ 3代表了级联1-3的表现,可以发现AP呈递增趋势,效果也是越来越好,符合预期。 实验二:提升阈值的作用 ...