rownames(DEG_DESeq2_2) <- DEG_DESeq2_2$SYMBOL#[1] 19249 9 这时准备基因排序向量时需要小心去除转换失败的基因。 DEG_DESeq2_2 <- na.omit(DEG_DESeq2_2[,c("log2FoldChange","ENTREZID")]) DEG_DESeq2_2 <- DEG_DESeq2_2[order(DEG_DESeq2_2$ENTREZID),] DEG_DESeq2_2 <- DEG...
PART 01Bulk RNA-Seq与单细胞/空间转录组 普通转录组测序(Bulk RNA-Seq)是提取组织、器官、群细胞的Total RNA进行测序,得到的是一群细胞中单个基因的平均表达水平,用来比较不同个体或同一个体的不同组织间的表达差异,但对内部细胞异质性较强的系统,如肿瘤组织,很多异常细胞的基因表达的信息会丢失,但是成本较低,技...
scRNA-seq和BulkRNA-seq是转录组学的两个重要分支,所以它们的联合分析是以验证性为主。将二者联合分析作为验证,基于表达模式相关性,利用 Bulk RNA-Seq 数据进行评估,明确单细胞测序分析结果的准确性,或者两种测序结果也可以相互印证。接下来一起看看Bulk RNA-seq& scRNA-seq有哪些?在文章中是如何应用的?No.1...
bulk RNASeq数据清洗的主要步骤包括使用质量控制工具、过滤低质量序列和接头序列,以及评估测序质量。使用质量控制工具:常用工具如fastqc和fastp。fastqc能生成质量报告,帮助我们评估原始数据的整体质量。fastp则集成了fastqc和trim_galore的功能,可以高效地完成数据清洗。过滤低质量序列和接头序列:使用工具如tri...
从TCGA和CGGA数据库中获得bulk RNA-seq数据,从GEO数据库中获得10x的GBM scRNA-seq数据。UMAP方法用于数据降维和聚类识别。通过Find All Markers函数识别不同细胞聚类的标记基因。通过加权基因相关网络分析(WGCNA)鉴定关键模块和差异表达基因(DEGs)。使用非负矩阵分解(NMF)算法来识别基于DEGs的不同亚型,并使用多变量Cox...
到目前为止,Bulk RNA-seq的差异分析主要涉及三种R包(又称为差异分析的三巨头):limma, edgeR, DESeq2。 下面先提供一下3种R包的官网使用说明: limma: 使用手册:https://bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf ...
对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
1.重新分析已有的scRNA-seq数据,鉴定到癌症样本中细胞异质性。 2.进行细胞间通讯分析,找到关键信号通路上的配受体对。 3.使用bulk RNA-seq验证信号通路上配受体表达,排除假阳性。 4.用TCGA和GTEx两个队列,根据配受体对的基因表达进行生存分析预后。 中文题目: ...
Bulk RNA-seq研究能保证测序深度,实现转录本的均匀覆盖,但特异性不足;scRNA-seq研究能精细到细胞水平,去除污染,保证基因检出的高特异性,但低丰度细胞类型,转录本检出的敏感性又差。很多研究开始两种技术结合使用,追赶热点的同时,实现优势互补,提升基因表达检测的全面性和准确性。
METAFlux可以根据bulk RNA-seq和scRNA-seq数据预测癌症代谢通量,以解决这些分析空白。METAFlux能够以nutrient-aware的方式使用癌症基因表达数据来表征整个代谢回路并输出non-degenerative通量。对于scRNA-seq 数据,METAFlux还检查TME中细胞类型之间的代谢异质性和相互作用。