BP神经网络 神经网络基本结构: 人工神经网络由神经元模型构成,这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。可把 ANN 看成是以处理单元 PE(processing element) 为节点,用加权有向弧(链)相互...
BP原理,直接翻译与斯坦福教程:《反向传导算法 - Ufldl》 网上公开课笔记:《Andrew Ng Machine Learning 专题【Neural Networks】下》 三篇文章,详细的数学推导已经在里面,不赘述了。下面记录我在实现过程中碰到的一些总结与错误. 神经网络的过程 简单说,就是我有一堆已知的输入向量(每个向量可能有多维),每次读取一...
1doublein[1] = {0.9};//训练样本输入1doublein1[1] = {0.1};//训练样本输入2doublein2[1] = {0.5};//训练样本输入3doubleout[1] = {0.1};//理想输出//神经网络训练目标://输入任意值,输出0.1BPNetWork* network = BPCreate(a,4,0.5);intc =1000;//训练1000次while(c--) {...
BP神经网络是目前为止最为成功的神经网络算法之一,其学习方式采用标准梯度下降的误差逆传播(error BackPropagation)的方式,以下介绍的基本BP神经网络为3层前馈神经网络。 图4 BP神经网络模型 对于BP神经网络,我们需要使用训练数据集对其进行参数训练,然后使用测试机检验训练结果,如果训练效果达标,则可使用训练出的数据应用...
BP神经网络输出 函数computO(i) 负责的是通过BP神经网络的机制对样本 i 的输入,预测其输出。回想BP神经网络的基本模型(详情见基本模型)对应的公式(1)还有 激活函数对应的公式(2): 在前篇设计的BP神经网络中,输入层与隐藏层权重对应的数据结构是w[Neuron][In],隐藏层与输出层权重对应的数据结构是v[Out][Neuron...
BP(Back Propagation)即反向传播,指的是一种按照误差反向传播来训练神经网络的方法。而 BP 神经网络即为一种按照误差反向传播的方法训练的神经网络,是一种应用十分广泛的神经网络。 BP 神经网络主要可以解决以下两种问题: 分类问题:用给定的输入向量和标签训练网络,实现网络对输入向量的合理分类。
(1)用C语言编程实现前向NN的BP算法 解: (1.1)开发思路 本文选用2层神经网络,包括隐含层1层,输出层1层,来设计BP神经网络。 本文隐含层和输出层的激活函数选用Sigmoid函数, 其函数曲线如下所示: 由奇偶检验问题的定义: 可定义如下分类函数: 其中y为BP神经网络的输出值,Y为分类结果。
BP神经网络算法的C语言实现代码 以下是一个BP神经网络的C语言实现代码,代码的详细说明可以帮助理解代码逻辑: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define INPUT_SIZE 2 #define HIDDEN_SIZE 2 #define OUTPUT_SIZE 1...
BP神经网络算法的C语言实现代码//BP神经网络算法,c语言版本 //VS2010下,无语法错误,可直接运行 //添加了简单注释 //欢迎学习交流 #include <stdlib.LayerNum> #include <math.LayerNum> #include <stdio.LayerNum> #include #define N_Out 2 //输出向量维数 #define N_In 3//输入向量维数 #define N_...
BP神经网络C语言实现 #include"iostream.h" #include"iomanip.h" #include"stdlib.h" #include"math.h" #include"stdio.h" #include"time.h" #include"fstream.h" #defineN11//学习样本个数 #defineIN5//输入层神经元数目 #defineHN8//隐层神经元数目 #defineHC3//隐层层数 #defineON3//输出层神经元...