The long standing contrast between Boltzmann's and Gibbs' approach to statistical thermodynamics has been recently rekindled by Dunkel and Hilbert [1], who criticize the notion of negative absolute temperature (NAT), as a misleading consequence of Boltzmann's definition of entropy. A different ...
木文探讨了Boltzmann统计力学及Gibbs统计力学的逻辑结构,并对这两种结构进行分析和比较,从而指出这两种结构不同的根本原因。逻辑结构,统计平衡态,系综一个物理理论的逻辑结构,是指该理论的基本概念和基本规律及这些概念和规律间的逻辑联系.我们要学习和研究某个物理理论,应着力于研究和掌握它的逻辑结构。1Boltzmann...
We implement a general numerical calculation that allows for a direct comparison between nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs Γ-space. Using paradigmatic first-neighbor models, namely, the inertialXY fer
In this work, we demonstrate the inappropriateness of the Boltzmann-Gibbslog-formulation of the physical Clausius entropy $S$ in connectingthermodynamics and phase space statistics. To achieve our goal, we studythermodynamically the simple case of ideal gases embedded in a finite heat bathand compare...
1988C. Tsallis, "Possible Generalization of Boltzmann-Gibbs... NGD Almeida - 《Physica A Statistical Mechanics & Its Applications》 被引量: 207发表: 2008年 Some comments on Boltzmann-Gibbs statistical mechanics A nonexhaustive review is presented of the limits of the impressive and vastly known ...
In this paper we give a new proof of the second order Boltzmann-Gibbs principle introduced in [5]. The proof does not impose the knowledge of a spectral gap inequality for the underlying model and it relies on a proper decomposition of the asymmetric part of the current of the system in ...
Boltzmann分布,也是gibbs分布,其实没实际差别。Gibbs是一类分布,开始就是推广Poisson分布来说的,后来推广到连续型,比如正态分布指数分布都是其范畴。但是这个分布比指数族分布范围要小一点。类似于正态分布就是我们的地球,gibbs分布是太阳系,指数族分布是银河系。在地球上生活,正态分布差不多就够了。但是你要是非要...
In order to find the general form, the so-called Boltzmann-Gibbs distribution, of the density operators, or the densities in phase, describing these states, we shall use a postulate of a statistical nature which is similar to the criteria used in statistics to find the unbiased probability ...
(2006) Thermostatistically approaching living systems: Boltzmann-Gibbs or nonextensive statistical mechanics? [J]. Physics of Life Reviews 3: pp. 1-22Tsallis C. Thermostatistically approaching living systems: Boltzmann-Gibbs or nonextensive statistical mechanics? [J]. Physics of Life Reviews, 2006,...
从Margolus–Levitin定理我们知道,不同微观态间的过渡时间有一个反比于能量E的下界,但是整个能量面上的...