2a1 + 7 * (-3) = -23 a1 = -1 数列{an}的通项公式 an = -1 + (n-1) (-3) = -3n +2 2 bn/an = 1 *C ^(n-1) bn = C^(n-1) * (-3n +2) b1 = C 0 * (-3×1 +2) = -1 求数列{bn}的前n项和Tn CTn - Tn = C(b1+b2+……+bn) -(b1+b2+……+bn)...
C.-12a+13b+23cD.-12a+12b+12c相关知识点: 试题来源: 解析 (\;MN)\;=\;(\;MD)\;+\;\;(DB\;)+\;(\;BN)=-\;12\;\;(DA)\;+\;\;(DB)\;+\;23\;(BC)=-\;12\;\;(a\;)+(\;\;b\;)+\;23\;(\;\;(DC)\;-\;\;(DB)\;)=-\;12\;(a\;)+\;(\;b)\;...
如图.在平行六面体ABCD-A1B1C1D1中.点M为A1C1与B1D1的交点.若A1B1=a.A1D1=b.A1A=c.点N在BM上.且BN=2NM.则向量AN等于( ) A.13a+23b-23cB.23a+13b-23cC.23a-13b-23cD.13a-23b-23c
(1)-28y4-21y3+7y2;(2)- 8 3a2bn+1- 4 3abn+1- 2 3abn;(3)6a(b-a)2-2(a-b)3;(4)x(b+c-d)y(d-b-c)-2c+2d-2b. 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 (1)原式=-7y2(4y2+3y+1);(2)原式=- 2 3abn(4ab+2b+1);(3)原式=6a(a-...
1.已知数列{Cn}中Cn=2的n次方+3的n次方,且数列{C(n+1)-pCn}是等比数列,求常数p2.设{An}使公比为q的等比数列,|q|>1,令Bn=An+1(n=1,2,3……),若数列{Bn}有连续四项在集合{-53,-23,19,37,82},求q3.设关于X的一元
23.【解】(1)①11 因为MN=20,AB=2,AM=8,所以BN=MN-AM-AB=20-8-2=10.因为D是线段BN的中点,C是线段AM的中点,所以B D = D N = ( 1 )/ ( 2 ) B N = 5,MC=AC=1/2AM=4.所以CD=AC+AB+BD=4+2+5=11. ②线段CD的长度不会发生改变,CD=11. 因为D是线段BN的中点,C是线段AM的中点,...
23.解:(1)因为MN =30cm,AB=2cm, AM =16cm, 所以BN =MN -AB -AM =12cm, 因为点C和点D分别是AM,BN的 中点, 所以 C=1/2AM=8cm,BD= BD=1/2BN= 6cm. 所以CD =AC +AB +BD =8+2+6= 16(cm). (2)①因为OC和OD分别平分∠AOM 和∠BON, 所以 ∠AOC=1/2∠AOM,∠ BOD= 1/2∠BO...
2 n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1 n=3a3=b2+2c2b3=c2+2a2c=a2+2b2 ……… 满足 an+bn+cn 3 + 2 ≥2014×( 3 - 2 +1)的n可以取得的最小整数是 . 试题答案 在线课程 考点:二次根式的应用 专题:新定义 分析:由表格可知当n=1时,a1+b1+c1= 2 ...
已知各个面都是平行四边形的四棱柱ABCD-A′B′C′D′(1)化简12AA′+BC+23AB.并在图形中标出其结果,(2)设M是底面ABCD的中心.N是侧面BCC′B′的对角线BC′上的点.且BN:NC′=3:1.设MN=αAB+βAD+γAA′.试求α.β.γ的值.
在淘宝,您不仅能发现BN23-18AG-01LH 1447F0015030的丰富产品线和促销详情,还能参考其他购买者的真实评价,这些都将助您做出明智的购买决定。想要探索更多关于BN23-18AG-01LH 1447F0015030的信息,请来淘宝深入了解吧!